SAIP2015

Contribution ID: 190

Type: Oral Presentation

Time of crossing (TOC) in Pulsed Eddy Current Signals

Friday, 3 July 2015 12:30 (20 minutes)

Abstract content
 (Max 300 words)
Formatting &
Special chars

Signals picked up from pulsed eddy current systems used to evaluate aluminium specimen exhibit interesting trends. The locus received in the presence of a specimen always reaches steady state conditions at a later time than that received in the absence of a specimen. This study investigated the trends observed in the pulsed eddy current signals picked up in the absence of a specimen in relation to those picked up in the presence of a luminium specimens of different thickness. The study was carried out at specimen temperature of 30 °C with specimen thicknesses varied from 0.5 mm to 3 mm in steps of 0.5 mm. A time of crossing (TOC) between the locus of the signal received in the presence of each specimen and that received in the absence of a specimen was observed for the different thicknesses. The relationship between the TOC and the specimen thickness was a nonlinear forth-order polynomial. Linearizing this relationship for small changes about a nominal thickness could be used to gauge differences in thickness of up to 4 μ m at a nominal thickness of 2 mm in thin aluminium sheets.

Apply to be
 considered for a student
 award (Yes / No)?

No

Level for award
 (Hons, MSc,
 PhD, N/A)?

N/A

Main supervisor (name and email)
and his / her institution

N/A

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Please indicate whether
this abstract may be
published online
(Yes / No)

Primary author: Dr KIBIRIGE, Betty (University of Zululand)Presenter: Dr KIBIRIGE, Betty (University of Zululand)Session Classification: Applied

Track Classification: Track F - Applied Physics