SAIP2015

Contribution ID: 190 Type: Oral Presentation

Time of crossing (TOC) in Pulsed Eddy Current Signals

Friday, 3 July 2015 12:30 (20 minutes)

Abstract content
 (Max 300 words)
 dry-Formatting &
 &classed chars

Signals picked up from pulsed eddy current systems used to evaluate aluminium specimen exhibit interesting trends. The locus received in the presence of a specimen always reaches steady state conditions at a later time than that received in the absence of a specimen. This study investigated the trends observed in the pulsed eddy current signals picked up in the absence of a specimen in relation to those picked up in the presence of aluminium specimens of different thickness. The study was carried out at specimen temperature of 30 °C with specimen thicknesses varied from 0.5 mm to 3 mm in steps of 0.5 mm. A time of crossing (TOC) between the locus of the signal received in the presence of each specimen and that received in the absence of a specimen was observed for the different thicknesses. The relationship between the TOC and the specimen thickness was a nonlinear forth-order polynomial. Linearizing this relationship for small changes about a nominal thickness could be used to gauge differences in thickness of up to 4 μ m at a nominal thickness of 2 mm in thin aluminium sheets.

Apply to be

br> considered for a student

%nbsp; award (Yes / No)?

No

Level for award

- (Hons, MSc,

- PhD, N/A)?

N/A

Main supervisor (name and email)

-br>and his / her institution

N/A

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Please indicate whether

-br>this abstract may be

-published online

-br>(Yes / No)

Primary author: Dr KIBIRIGE, Betty (University of Zululand)

Presenter: Dr KIBIRIGE, Betty (University of Zululand)

 $\textbf{Session Classification:} \ \ \textbf{Applied}$

Track Classification: Track F - Applied Physics