# Determining the spectroscopic quadrupole moment ( $\mathrm{Q}<$ sub>s</sub>) of the first $2<$ sup>+</sup> state in <sup>40</sup>Ar 

Wednesday, 1 fuly 2015 16:10 (1h 50m)


#### Abstract

Max 300 words)<br><a href="http://events.saip.org.za/getFile.py/ target="_blank">Formatting \& <br>Special chars</a>


The present study aims at determining the spectroscopic quadrupole moment $\mathrm{Q}<\mathrm{sub}>\mathrm{s}</$ sub>, for the first $2<$ sup $>+</$ sup $>$ excited state in $<$ sup $>40</$ sup $>$ Ar by carrying out the first order Coulomb-excitation reorientationeffect measurements of <sup>40</sup>Ar beams at safe energies. Only one such measurement [1] was done in the 1970's with unsafe beam energies. We have used the <sup>208</sup>Pb (<sup>40</sup>Ar, <sup>40</sup>Ar)<sup>208</sup>Pb reaction at 143.2 MeV , for which the minimum distance of closest approach between the nuclear surfaces is $\sim$ 6.6 fm . The first $2<$ sup $>+</$ sup $>$ state at 1460 keV in $<$ sup $>40</$ sup $>\mathrm{Ar}$ is populated via Coulomb-excitation and the de-excited $\gamma$-rays are detected using the AFFRODITE clover detector array[2] which comprises of 8 HPGe detectors ( 5 at $90^{\circ}$ and 3 at $135^{\circ}$ ). The scattered particles are detected in coincidence with $\gamma$-rays using a double sided S3 silicon detector which consists of 24 rings (for angular distribution) on one side and 32 sectors (for Doppler correction) on the other. These measurements were done at low beam currents of ${ }^{2} 0.5 \mathrm{nA}$ and with the target ( $1 \mathrm{mg} . \mathrm{cm}<$ sup $>-2</$ sup $><$ sup $>208</$ sup $>\mathrm{Pb}$ ) positioned at 10.05 mm from the S3 detector at backward angles to be sensitive to $\mathrm{Q}<\mathrm{sub}>\mathrm{s}</$ sub>. The integrated $\gamma$-ray yields per ring carry information about the $\mathrm{Q}<$ sub>s</sub>( $2<$ sup>+</sup>) value and will be compared with the semi-classical coupled-channel Coulomb-excitation code GOSIA.

References :
1)R. H. Spear, Phys. Rep. 73, 369 (1981).
2) M. Lipoglavsek et al., Nucl. Instr. Meth. Phys. Res., A557, 523 (2006).

## Apply to be<br> considered for a student <br> \  award (Yes / No)?

Yes

## Level for award<br>\ (Hons, MSc, <br> \  PhD, N/A)?

MSc

## Main supervisor (name and email)<br>and his / her institution

Nico Orce
njorce@uwc.ac.za
University of the Western Cape

# Would you like to <br> submit a short paper <br> for the Conference <br> Proceedings (Yes / No)? 

No

Please indicate whether<br>this abstract may be<br>published online<br>(Yes / No)

Yes

## Primary author: Mr MOKGOLOBOTHO, Makabata Jeremia (University of the Western Cape)

Co-authors: Ms REBEIRO, Bernadette (University of the Western Cape); Mr SINGH, Bhivek (University of the Western Cape); Mr MEHL, Craig (University of the Western Cape); Dr RAJU, M. Kumar (University of the Western Cape); Dr WIEDEKING, Mathis (iThemba LABS); Mr ERASMUS, Nicholas (University of the Western Cape); Prof. ORCE, Nico (University of the Western Cape); Ms KHESWA, Ntombi (iThemba); Dr JONES, Pete (iThemba LABS); Dr ADSLEY, Phillip (iThemba LABS and Stellenbosch University); Dr THOMAE, Rainer (iThemba); Dr BARK, Rob (iThemba LABS); Prof. TRIAMBAK, Smarajit (University of the Wester Cape); Dr DINOKO, Tshepo (iThemba LABS); Prof. PAPKA, paul (Stellenbosch University)

Presenter: Mr MOKGOLOBOTHO, Makabata Jeremia (University of the Western Cape)
Session Classification: Poster2

Track Classification: Track B - Nuclear, Particle and Radiation Physics

