
SAIP2015

Contribution ID: 341

Type: Poster Presentation

Electrical characterization of 5.4 MeV alpha particle irradiated, low doped n-type Gallium Arsenide.

Tuesday, 30 June 2015 16:10 (1h 50m)

Abstract content
 (Max 300 words)
Formatting &
Special chars

Gold Schottky diodes were fabricated on n-type GaAs with a free carrier density of 1E15. The diodes had excellent rectification properties with an ideality factor of 1.03 signifying the dominance of the thermionic emission process in charge transport across the barrier. The diodes were irradiated with alpha particles up to a fluence of $2.56 \times 100^{\circ} 10 \text{ Cmm}^{\circ} 2$. Deep level transient spectroscopy (DLTS) performed on these contacts in the 15-300K range revealed the prominent well known radiation induced defects E1-E3. Laplace deep level spectroscopy split the E3 defect into two components, revealing the metastable E3 component with an activation enthalpy of 0.38eV. Current-voltage (I-V) and Capacitance-voltage (C-V) measurements revealed degraded diode characteristics after irradiation, with the reverse saturation leakage current and the free carrier density being the most susceptible.

Apply to be
 considered for a student
 award (Yes / No)?

Yes

Level for award
 (Hons, MSc,
 PhD, N/A)?

MSc

Main supervisor (name and email)
and his / her institution

Mmantsae Moche Diale mmantsae.diale@up.ac.za University of Pretoria

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Please indicate whether
this abstract may be
published online
(Yes / No)

Yes

Primary author: Mr TUNHUMA, Shandirai (University of Pretoria)

Co-authors: Prof. AURET, Danie (University of Pretoria); Dr DIALE, Mmantsae (University of Pretoria)

Presenter: Mr TUNHUMA, Shandirai (University of Pretoria) **Session Classification:** Poster1

Track Classification: Track A - Division for Physics of Condensed Matter and Materials