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Abstract. It is practically impossible to calculate the dynamics of each degree of freedom
in a large, complex quantum system. When only a small part of the system is of interest,
the rest of the system can be modelled as a thermal bath consisting of an infinite number of
independent harmonic oscillators. In quantum master equations, dynamics of the bath and
the coupling of the relevant subsystem to the bath are introduced through bath correlation
functions. However, the physical significance of these correlation functions and the microscopic
dynamics and interactions of the bath, are not clear from the derivation of the master equations.
In this paper we give a microscopic interpretation of the bath and discuss the significance of the
correlation functions in the context of photosynthetic light harvesting. The ideas and results
are applicable to many other quantum systems as well.

1. Introduction
In many fields of physics and chemistry, the dynamics of a small quantum subsystem contained
in a much bigger system need to be calculated. The total system evolves unitarily and, in
principle, its dynamics can be calculated exactly. In reality, these systems are far too big
and far too complex to allow calculation of the dynamics of all degrees of freedom. Since the
dynamics of the subsystem depends on interaction with the rest of the system, considering
an isolated subsystem is also not a solution. In general, due to energy exchange between the
subsystem and the other degrees of freedom, it is not even possible to describe the subsystem
dynamics with a Hamiltonian approach. One of the ways to treat this problem is to partition
the total Hamiltonian in three parts [1]: HS describing the subsystem as if it were an isolated
system, HB describing the rest of the system (bath) as if it were isolated and HSB describing
the interaction between the relevant subsystem and the bath. Instead of treating HB and HSB

exactly, the actual bath is substituted with an effective bath having more or less the same effect
on the system. A commonly used effective bath consists of an infinite number of independent
quantum harmonic oscillators [2]. These harmonic oscillators are coupled linearly (see below)
to the relevant subsystem. The harmonic bath causes both fluctuations and dissipation in the
relevant subsystem. Although this approach is useful for many physical systems, its application
to photosynthetic light harvesting will be discussed to emphasize its applicability.
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2. A brief introduction to quantum dynamics in photosynthesis
Photosynthesis can be summarised as a process consisting of two phases. In the first phase,
light energy is captured and transported to a photosynthetic reaction center [3]. The second
phase, which is initiated at the reaction center, entails the conversion of the captured energy
to energy-rich chemical compounds [4]. The capturing and energy conversion phases can be
regarded as separate processes. The light-harvesting complexes responsible for capturing light
energy consist of pigment molecules embedded in a protein conglomerate [5]. During the light
capturing phase, a photon is absorbed and its energy used to excite a pigment molecule from the
ground state to an electronic excited state. This excitation is transferred from pigment molecule
to pigment molecule until it reaches the photosynthetic reaction center from where the chemical
conversion phase is initiated [3]. The quantum efficiency of the first phase is extremely high;
often more than 95% [6]! This high efficiency was one of the catalysts for the large interest in
theoretical biophysics in recent years. Most of this research field is focused on the quantum
mechanical description of energy transfer during the energy-capturing phase of photosynthesis.
The light harvesting complexes are very large and intricate macromolecules (see for example
[7]). To describe the dynamics of all the degrees of freedom is impossible. In general, we are
interested only in the electronic degrees of freedom. However, the protein scaffold is important
for energy quenching and its effect on the electronic degrees of freedom has to be considered. For
these three reasons the Hamiltonian-partitioning approach outlined above is frequently used.

3. The relevant system1

Each of the pigment molecules in a light harvesting complex can be regarded as a two-level
system with a ground state and an excited state [8]. Due to the possibility of excitation, each
pigment molecule has an associated transition dipole moment. The transition dipole moments
of different molecules interact in a similar manner as transient dipole moments in matter do to
bring about London dispersion forces. One can say that different pigment molecules are coupled
to one another. The strength of the coupling depends on the distance and relative orientations
of the pigment molecules. The Hamiltonian of the relevant system is therefore:

HS = Eg |g〉 〈g|+
N∑
i=1

Eei |ei〉 〈ei|+
N∑
i6=j

Vij |ei〉 〈ej | , (1)

where the first term is the ground state energy of the system (all pigment molecules are in their
ground states) and the second term is a sum of single-excitation energies (only molecule i is
in the excited state). The last term represents the dipole coupling between different pigment
molecules.

In what follows, we will mostly consider a single pigment molecule as the relevant system.
Extension to more than one pigment molecule does not change the way in which the bath couples
to the relevant system.

1 The word ”system” can cause confusion. We will use the term ”relevant system” for the electronic degrees
of freedom and ”bath” for all other degrees of freedom such that the union of relevant system and bath evolves
unitarily in time. We will reserve the term ”system” exclusively for this union.
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4. Interaction of the relevant system with an oscillator
Consider an isolated pigment molecule consisting of two identical subunits. For comparison with
Eq. (1), we will call this molecule i.

Figure 1. A pigment molecule
consisting of two identical subunits.
The coordinates of the two subunits
measured on the same coordinate
axis are given by q1 and q2, and δ
is the equilibrium shift in each of
these coordinates upon excitation
of the molecule.

One of the vibrational modes of the molecule constitutes stretching and contracting along
the axis connecting the two subunits. Let’s consider an effective coordinate Q = q1 − q2. The
potential energy causing the oscillation is now quadratically dependent on Q. Let the minimum
of this potential be indicated by the black circles when the molecule is in its ground state.
Suppose that the structure of this molecule in its excited state is such that the equilibrium
position of each subunit is shifted a distance δ outwards. The potential minimum (in coordinate
Q) is therefore shifted by d = 2δ. Because of the large masses of the subunits, one can assume
that the oscillations happen on a much slower timescale than the transition from the ground
to the excited state in molecule i (adiabatic approximation). To excite molecule i from the
vibrational ground level of its electronic ground state, one therefore has to apply more excitation
energy than the energy difference Eei−Eg in Eq. (1). The energetics accompanying the electronic
excitation is depicted in figure 2. The parameter d in figure 2, which is equal to 2δ in figure 1,
describes how strongly the relevant system is perturbed by (or coupled to) the oscillation. This
parameter will be useful later again.

Figure 2. The harmonic oscilla-
tor potentials corresponding to the
ground and excited states of a pig-
ment molecule with two subunits.
Eg and Eei are the energies of the
ground and excited electronic states
respectively. As indicated by the
dotted line arrows, the molecule is
excited to a non-ground vibrational
level of the electronic excited state,
before relaxing to the ground vibra-
tional level. The parameter d is an
indication of the coupling strength
between electronic excitation and
the molecular vibration.

Although it is very elucidating, the discussed model is an oversimplification: the pigment
molecules are complex structures and have numerous intramolecular vibrational modes. In
addition, intermolecular vibrations due to other pigments and the protein environment need
to be taken into account. One can think of these protein vibrations as damping or driving
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oscillations of pigment molecules. To account for all of these vibrations, one can consider the
system as an electronic two-level system coupled to a collection of normal harmonic oscillator
modes called the bath.

5. The bath
In general, microscopic knowledge of the system is not necessary. It is not necessary, for example,
to know the exact positions or configurations of proteins in photosynthetic light harvesting
complexes. We can replace the real bath with an infinite set of harmonic oscillators as long as
the interaction with the relevant system is the same for the original and the new bath. The
Hamiltonian of the system is then

H = |g〉Hg 〈g|+ |ei〉He 〈ei| , (2)

with

Hg =
∑
l

[ p2l
2ml

+
1

2
mlω

2
l q

2
l

]
He = ~(Eei − Eg) +

∑
l

[ p2l
2ml

+
1

2
mlω

2
l (ql − dl)2

]
,

where ml, ql, pl and ωl are the mass, coordinate, momentum and frequency of the lth oscillator
and dl is the distance by which the coordinate equilibrium of oscillator l is shifted upon electronic
excitation of the pigment molecule.

Instead of coupling only to a single harmonic oscillator like in figure 2, the relevant system now
couples to infinitely many independent harmonic oscillators. This model is known in literature
as the Spin-Boson Model [2].

While it is clear from Eq. (2) how the bath is changed when the relevant system is excited, the
opposite effect (change of the relevant system due to the bath) is not clear. In Markovian master
equations based on the Spin-Boson Hamiltonian, the bath degrees of freedom enter the equation
of motion only through two-times correlation functions of the form C(t) = 〈qn(t)qn(0)〉, where qn
is the bath coordinate coupled to the nth pigment molecule and 〈. . .〉 indicates ensemble averaging
over the bath degrees of freedom. If one does not have any knowledge of the microscopic nature
of the bath, it is hard to give a physical interpretation of these correlation functions from the
derivation of the quantum master equations.

An equivalent way of thinking about the Spin-Boson Model is the so-called Multimode
Brownian Oscillator model [2] (which one can consider as an extended Jaynes-Cummings model).
In this model the relevant system is linearly coupled to a finite set of harmonic oscillators, like
in Eq. (2). In turn, these harmonic oscillators (which we will call the primary oscillators)
are coupled linearly to an infinite set of other harmonic oscillators (which we will call the free
oscillators since they are not coupled to the relevant system). A schematic of this model is shown
in figure 3. It is important to note that the bath correlation functions enter the master equation
description through commutators of the relevant system-bath interaction Hamiltonian. Since
the free oscillator coordinates don’t appear in this interaction Hamiltonian, the only correlation
functions in the master equations are therefore the ones containing the coordinates of the primary
oscillators. These correlation functions are statistical parameters comparing the coordinates of
the primary harmonic oscillators at two different times. These parameters are determined by
the coupling of the primary oscillators to the free bath and the relevant system.

6. Effect of the bath on the relevant system
The bath provides both fluctuations and dissipation in accordance with the Fluctuation-
dissipation theorem [1]. The primary oscillators are quantum Brownian oscillators (quantum
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Figure 3. A schematic of the
quantum Multimode Brownian Os-
cillator model. The straight ver-
tical lines indicate linear coupling
and the grey bar represents the pri-
mary oscillator.

oscillators subject to the fluctuating net force of an infinite set of other oscillators). The thermal
fluctuations of the free oscillators cause the primary oscillator coordinates to fluctuate. Through
the linear coupling between the primary oscillator coordinates and the relevant system, the
excited state energy (and therefore the energy gap between the ground and excited state) of
the pigment molecule also fluctuates. When the fluctuating energy gap of one two-level system
corresponds to the energy gap of another two-level system, resonance energy transfer between
the two-level systems is induced. In this way the bath facilitates energy transfer between pigment
molecules.

The bath also acts as dissipator. When energy is transferred from one pigment molecule to
a non-ground vibrational level of another pigment, the bath can dissipate the energy difference
between the latter vibrational level and the ground level through the coupling to the free bath.
Because the free bath has so many degrees of freedom, the energy is never transferred back to
the system. This dissipation continues until the system as a whole reaches thermal equilibrium.

In order to show how the effect of bath fluctuation and dissipation on the relevant system can
be characterised, let’s suppose that, as shown in figure 3, we describe the system with only a
single primary oscillator. This single oscillator is the link between the free bath and the relevant
system, and the effect of these two subsystems on each other should therefore be channelled
through the primary oscillator. All the dynamics of the bath which have an influence on the
system can be therefore be obtained by a characterization of the primary oscillator coordinate.
The bath correlation functions provide such a characterisation.

To get a better understanding of the meaning of these correlation functions, let us consider
a specific correlation function; that of an overdamped Brownian oscillator [2]. This correlation
function is often used in simulations because it can be calculated analytically and depends on only
three physical parameters: the temperature, bath decorrelation time and the bath reorganisation
energy (the energy released when the system relaxes to a ground vibrational state—see figure
2). This correlation function is a complex number for a quantum oscillator. As a very crude
approximation, however, one can assume this correlation function (for each pigment molecule)
to be an exponentially decreasing function like it is in the classical case. Let us now expand
our relevant system to a number of pigment molecules with varying coupling between them. It
was noted earlier that 〈. . .〉 indicates an ensemble average. Suppose therefore that we prepare
a very large number of initially identical systems and measure the product qn(t)qn(0) in each
of them. The correlation function C(t) = 〈qn(t)qn(0)〉 will then be an average of all those
measurements. Assuming the crude approximation for the correlation function discussed above,
the ensemble average of C(t) will be non-zero immediately after electronic excitation of the ith

pigment molecule in the system. This means that all systems (and relevant systems) in the
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ensemble behave similarly and the dynamics of the relevant system (which is also determined
by an ensemble average) are driven in a specific direction by the bath. When the correlation
functions decayed significantly, different members of the ensemble behave differently and there
exist no net drive on the system due to the bath. It is clear now that the bath correlation
functions can be thought of as parameters determining the strength and duration of the influence
of the bath on the system.

7. Conlusion
We have described how a complex quantum system can be partitioned into a small relevant
subsystem and a bath. The Spin-Boson Model was introduced to describe the bath and the
interaction of the relevant system with the bath. The effects of the bath (fluctuation and energy
dissipation) on the relevant system were illustrated by considering the Multimode Brownian
Oscillator model, which is equivalent to the Spin-Boson Model. The statistical importance and
the physical interpretation of the bath correlation functions were discussed. The correlation
functions characterises the strength and duration of the bath’s influence on the relevant system.
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