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Abstract. Using the experimentally proposed model of the C centre in silicon (Si), we have 
calculated the electronic properties of the C centre defect in Si using Perdew-Burke-Ernzerhof 
(PBE) with a Γ-point (PBE- Γ) as well as a 2×2×2 k-mesh (PBE-2×2×2) sampled Brillouin-
zone (BZ). The choice of BZ sampling was found to significantly influence the calculated 
defect properties. PBE-2×2×2 did not predict any metastability of the C centre, PBE-Γ 
predicted charge-state controlled metastability of the C centre under both bias on and bias off 
conditions. The C1 and C2 configurations, in which the boron-vacancy pairs are in the nearest- 
and next-nearest-neighbour positions, have been predicted as the metastable configurations of 
the C centre in Si. 

1. Introduction
The semiconductor electronics industry has evolved from macro to micro and recently to nano
electronics. As the circuits become more miniaturized and the packing density becomes larger, there is
need for more understanding of the fundamental properties of the semiconductors in use. Other
semiconductors including GaAs, GaN, AlGaN, graphene, boron nitrine and ZnO are also currently
intensively being studied both experimentally and theoretically as possible alternatives to silicon (Si).
However, interfacing these semiconductors with the Si drive electronics is still costly and
problematic.[1]

Defects can be beneficial or detrimental in the functionality of semiconductor devices, and need to 
be taken into account in device design. A fundamental understanding of these defects and their 
properties is essential in defect engineering. Most defects in semiconductors are known to be stable in 
one specific configuration is all charge states. However, the same defects may occur in more than one 
configuration, at either of the charge states. These types of defects are referred to as metastable 
defects.[2–5] In silicon, several metastable defects have been experimentally observed, some of these 
include; the FeAl pair[3], the CsCi defect pair[4,5] and the boron-vacancy (B-V) pair, also known as 
the C centre,[2] among others.  

The C centre has been observed using deep-level transient spectroscopy (DLTS) by Chantre[2] in 
ultra-fast-quenched boron-doped Si to be metastable. In the study, Chantre observed that this defect 
centre introduced two deep donor-hole traps at 0.50 eV and 0.36 eV above the valence band maximum 
(VBM). These two donor-hole traps were associated to the next-nearest- and nearest-neighbour B-V 
pairs in silicon respectively.  

Theoretical studies have also been done on both the isolated BSi and VSi as well as the B-V pair 
(complex) in Si.[6–8] However a survey of the available literature on the theoretical studies on B-V 
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complex (C centre) in Si reveals that these studies have only been on impurity- or vacancy-mediated 
diffusion in Si.[6,7] None of these studies have investigated the metastability of the C centre defect in 
Si. 

Although density functional theory (DFT) has been used to study defects in semiconductors,[9–11] 
it has been shown that DFT inaccurately predicts defect thermodynamic transition levels among other 
properties[12–15]. These failures of DFT stem mainly from the approximations made to the exchange-
correlation (XC) functional. The local density approximation (LDA)[16,17] and the Perdew-Burke-
Ernzerhof (PBE) form of generalized gradient approximation (GGA),[18] are the most commonly 
used approximations of the XC functionals. Although several attempts have been made to remedy 
some of the failures of DFT, [12,14,19–22] standard DFT (using LDA or GGA) can still be used to 
investigate some defect properties in semiconductors but with additional corrections.[9,23]  

2. Computational details
We have used PBE form of GGA within standard DFT We have used the projector-augmented wave
(PAW) method,[24,25] as implemented in the VASP code.[26,27] The unit cell was optimized using
an energy cutoff of 600 eV and a Γ centred 8×8×8 Monkhorst-Pack grid of k−points using PBE. We
obtained a lattice constant of 5.45 Å. From this, supercells consisting of 64 silicon atoms were
constructed. PBE defect calculations were done using the 64 silicon atoms supercell with a kinetic
energy cutoff of 600 eV, Methfessel-Paxton (MP) smearing of 0.02 eV, and a Γ-point (hereto referred
as PBE-Γ) as well as a Γ cantered 2×2×2 Monkhorst-Pack grid of k−points (hereto referred as PBE-
2×2×2) to sample the Brillouin zone (BZ). Band gaps of 0.65 eV (PBE-2×2×2) and 0.50 eV (PBE-Γ)
were obtained. The experimental band gap of silicon is 1.12 eV.[28] While the Γ-point sampling of the
BZ is often regarded as the simplest scheme of sampling the BZ, Puska et al.[29] using LDA XC
functionals showed that in some cases (e.g. vacancy in silicon), this sampling scheme gives a correct
qualitative description of the defect compared to a 2×2×2 k−points sampled BZ.

We considered two configurations of C centre namely; C1, where the silicon vacancy (VSi) is 
at the nearest-neighbour position w.r.t. the substitutional boron (BSi), and C2 in which VSi is in the 
next-nearest-neighbour position w.r.t. the BSi as suggested by Chantre[2] (see Figure 1). Formation 
energies of the defects were calculated using the Zhang and Northrup formalism[30] i.e., the formation 
energy of the C centre in silicon at charge state � is  

E f ,q (BV ) = ED,q − Ep + 2µSi − µB + q(EF + EV + ∆V )
(1) 

Where ED,q  is the total energy of the defect  supercell at charge state q , Ep  is the total energy of
the pristine 64 atoms silicon supercell, µSi  and �� are the chemical potentials for Si and B 
respectively, EF  is the Fermi level, EV  is the valence band maximum (VBM) and ∆V  is the
potential alignment term. For the charged supercells, a jellium charge compensating background of 
opposite sign was used, as implemented in the VASP code. Monopole correction[23] was done on the 
total energies and potential alignment between the pristine and the defect supercell was done using the 
technique of ref [9]. The thermodynamic transition level, ε , for ′q  and q  charge sates was obtained
as 

ε(q / ′q ) = E f , ′q (BV )− E f ,q (BV )

q − ′q , (2) 

giving the Fermi energy at which the formation energies of the defect in the two charge states are 
equal. 
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2.1.  VSi defect in silicon 
The isolated vacancy in silicon, VSi has been extensively studied via ab initio LDA within DFT by 
Puska et al.[29] we have calculated both the formation energies at various charge states using equation 
3.2 (Table 1) and the thermodynamic charge transition levels using equation 3.3. Our calculated 
formation energies, for both PBE-Γ and PBE-2×2×2, are in good agreement with those of Puska et 
al.[29] Although the calculated thermodynamic transition levels are in good agreement with those 
calculated by Puska et al.,[29] they are not consistent with the experimentally reported values[31], 
which report no defect levels associated with donor states only and with acceptor states.  

2.2.  BSi defect in silicon 
Most of the theoretical studies in literature have investigated interstitial boron in silicon (Bi). 
Substitutional boron in silicon (BSi), is a shallow acceptor in silicon. Similar to case of VSi, we 
calculated the formation energies of BSi defect in various charge states (see Table 1) from which its 
thermodynamic transition levels were determine (see Figure 2). Formation energy calculated 

Table 1. Calculated formation energies in eV at 
various charge states (figures in bold indicate 
minimum energy configurations). 

Defect Functional -1 0 1 
V-Si PBE-2×2×2 3.01 2.80 2.83 

Ref [29]-2×2×2 3.68 3.42 3.72 
PBE-Γ  2.85 2.43 2.1q 
Ref [29]-Γ 3.56 2.86 2.51 

B-Si PBE-2×2×2 1.33 0.75 0.68 
PBE-Γ  0.16 0.22 0.33 

C1 PBE-2×2×2 3.59 3.27 3.41 
PBE-Γ  3.29 2.69 2.29 

C2 PBE-2×2×2 3.51 3.26 3.32 
PBE-Γ  2.94 2.64 2.48 

Figure 1. The VSi position for the C1 and C2 
configurations of the C centre in silicon. 

Figure 2. Figure showing the thermodynamic 
transition levels for the C1 and C2 
configurations of the C centre in silicon. 

Table 2. Calculated thermodynamic transition 
levels in eV for the defects referenced to the 
valence band edge. 

Defect Functional 0/– +/0 
V-Si PBE-2×2×2 0.20 -- 

Ref [29]-2×2×2 0.26 -- 
PBE-Γ  0.42 0.32 
Ref [29]-Γ 0.70 0.35 
Experiment[31] -- 0.05 

B-SI PBE-2×2×2 0.57 0.07 
PBE-Γ  -- -- 
Experiment[32] 0.05 -- 

C1 PBE-2×2×2 0.32 -- 
PBE-Γ  0.28 0.23 
Experiment[2] -- 0.36 

C2 PBE-2×2×2 0.26 -- 
PBE-Γ  0.30 0.21 
Experiment[2] -- 0.50 
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according to PBE-Γ was the lowest, while PBE-2×2×2 yielded the highest formation energy. Only 
PBE-2×2×2 predicted thermodynamic transition levels at EV + 0.07eV and EV + 0.57eV
respectively. It is evident that PBE-Γ gives the incorrect description of BSi. However, its important to 
mention that experimentally, BSi has only an acceptor level at 0.045 eV.[32] Since BSi is a shallow 
acceptor in silicon, no alignment term for the defect levels was used in calculating the formation 
energies for its charged states. This is because the alignment of shallow defect levels is still the subject 
of on-going debate.[23,33,34] Furthermore, due to the large hydrogenic orbitals of the shallow donor, 
it is not clear that the super cell chosen in this study is large enough. 

2.3.  C centre in silicon 
BSi is a shallow accepter in silicon, while VSi is known to be highly mobile in silicon. When these two 
defects interact they form the C centre defect in silicon. We have calculated the formation energies 
(Table 1) at various charge states as well as the thermodynamic transition levels (Table 2 and Figure 
2) for two different configurations of the C centre. The main aim of this study is to investigate the
metastability of the C centre and if the metastability is charge-state controlled. From our study we
found that both the formation energy and the thermodynamic transition levels are dependent on the
position of vacancy in the silicon lattice (configuration dependent). This is in agreement with what
was observed experimentally.[2] In that study, Chantre [2] experimentally observed two donor-hole
traps that were associated to next-nearest- and nearest-neighbour configurations of the C centre. C2
was found to be the most stable configuration for all the charge states using PBE-2×2×2. For the case
of PBE-Γ, C2 was the most stable configuration for the −1 and neutral charge state while C1 was the
most stable configuration for the +1 charge state.

2.3.1.  Metastability of the C centre and comparison to experiment.  Chantre[2] using DLTS 
experiments posited that the C centre in Si was configurationally bistable. From that experiment, it 
was observed that the C centre had donor levels at EV + 0.54 eV and EV + 0.36  eV that were
associated with two DLTS peaks.  Chantre[2] labeled these peaks H1 and H2 respectively. The same 
experiment identified the H1 and H2 peaks as associated with the next-nearest- and nearest-neighbour 
B-V pairs, respectively. In our study, as mentioned in section 2.  we refer to the nearest- and next-
nearest-neighbour configurations as C1 and C2 respectively.  

In p-type material, under zero bias (referred to as bias off by Chantre[2]), the Fermi level is close to 
the valence band edge (EV ), i.e. EF ≈ EV . This leads to defects emitting electrons (i.e. filled with
holes). Under reverse bias (referred to as bias on by Chantre[2]), the Fermi level in the depletion 
region of a Schottky diode is close to the conduction band edge (EC ), i.e. EF ≈ EC . This leads to
defects capturing electrons (i.e. emitting holes). Since it was experimentally observed that the 
emission rates of the H1 and H2 peaks did not depend on the electric field, it was concluded that these 
two peaks correspond to donor levels,[2] e.g. +/0.  

The annealing by Chantre[2] was performed at approximately 300 K, which leads to a value of kT 
of 0.026 eV. This implies that, for the occupation of two defect configurations to differ significantly, 
the difference in their formation energies should be at least approximately kT. A difference in 
formation energy of approximately 3kT (≈ 0.1	eV) or greater would lead to the ratio of occupation of 
the two configurations to be 1:10 or greater (assuming no degeneracy). This means that, 
experimentally, one level will dominate. 

As seen in Figure 2, PBE-2×2×2 does not predict a +/0 thermodynamic transition level. Ignoring 
this, we still went ahead to analyze whether there was any sign of metastability predicted by PBE-
2×2×2, using the � = 0 and � = −1 charge states. For the 0/− thermodynamic transition, the C1 
transition level is deeper than the C2 transition level w.r.t. EV . This implies that, in a DLTS
experiment, C1 will emit at a lower rate than the C2, and therefore the emission by the C1 
configuration will be observed at a higher temperature than that of the C2.  
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Under bias off, � = 0, the C2 configuration was the most stable configuration of the C centre. The 
formation energy difference between the two configurations was 0.018 eV, which is less than 3kT at 
300 K. This implies that both the C1 and C2 defect levels will be observed since they will have 
roughly similar occupation probabilities. This is not consistent with what was reported by Chantre[2], 
who observed only one dominant peak. Furthermore, the PBE-2×2×2 prediction here implies that the 
dominant peak, the C2 in this case, is likely to be observed at lower temperatures, which is also not 
consistent with the reported experimental results.[2] 

Under bias on, � = −1, the C2 configuration is still the most stable configuration. The formation 
energy difference between C1 and C2 configurations is 0.075 eV. This implies that the C2 
configuration, which gives rise to the lower temperature DLTS peak, is predicted to be more 
dominant. This is also not consistent with what was reported by Chantre[2], who observed both peaks 
at approximately equal heights under these conditions.

PBE-2×2×2 thus predicts variation in peak heights of the H1 and H2 peaks after annealing under 
different bias conditions. However, the relative (temperature) positions of the peaks and their relative 
heights do not agree with experiment.[2] 

PBE-Γ predicted both the +/0	and 0/− thermodynamic transition levels (see Figure 2). In both 
cases, the transition level for the C2 configuration is closer to EV  compared to that of the C1
configuration. This implies that there will be faster (hole) emission by C2 and hence, C2 is likely to be 
observed at lower temperature compared to the C1. This differs from the experimental observation by 
Chantre[2], who associated the higher temperature peak (H1) with the C2 configuration. 

Under bias off, � = +1 and PBE-Γ predicted the C1 as the most stable configuration of the C 
centre. The formation energy difference between the C1 and C2 configurations was 0.190 eV, which is 
greater than 3kT at 300 K. This implies that, under these conditions, only the C1 configuration will be 
occupied and hence experimentally observable. As discussed earlier, the C1 configuration leads to a 
DLTS peak at higher temperature. This agrees with the experimental observations of Chantre[2], who 
observed the higher temperature DLTS peak under zero bias. 

Under bias on, � = 0 and C2 is the most stable configuration. The formation energy difference 
between the two configurations is only 0.049 eV, which is about 2kT at 300 K implying that both the 
C1 and C2 configurations will be experimentally observable, with the occupation of the C2 
configuration (at lower temperature) being significantly higher than that of the C1 (ignoring the effects 
of degeneracy). If degeneracy is taken into account, the occupation of C2 would be increased by a 
factor 2.5. Chantre[2] experimentally observed both the H1 and H2 peaks, with the H1 (at higher 
temperature) having a much lower peak height, as a shoulder of the H(0.44). 

PBE-Γ predicts some metastability, which agrees with the experimental observations[2], but not 
with the identification of the defect configurations. 

3. Conclusions
We used DFT with GGA functionals to investigate the metastability and other properties of the C
centre (B-V complex) in silicon and compared our results to the experimentally observed values. In
addition, we have also investigated the properties of isolated defects that form the B-V defect (VSi and
BSi). We have compared how the choice of k-points used in sampling the BZ influenced the predicted
defect properties of VSi, BSi and the C centre in silicon.

Our predicted properties of VSi defect in silicon were consistent with those predicted by Puska et 
al.[29] The choice of BZ sampling significantly influenced the predicted defect properties. We found 
that the PBE functional using Γ-point sampling (PBE- Γ) gave a better qualititative description of the 
defect compared to the PBE functional using a 2×2×2 k-mesh (PBE-2×2×2). For BSi, only PBE-2×2×2 
predicted thermodynamic transition levels in the band gap. 

Although PBE-Γ predicted some form of charge-state controlled metastability of the C centre that 
was consistent with experimental observations, the identity of the defect configurations was not 

Proceedings of SAIP2015

SA Institute of Physics ISBN: 978-0-620-70714-5 123



consistent with other experimental observations. PBE-2×2×2 only predicted variations in peak heights 
under different bias conditions that were not consistent with the experimental observations.  
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