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The Higgs Boson and beyond …….. 
SH Connell  

Computa(onal	
  Physics	
  
	
  
Why	
  
•  Essen&al	
  to	
  calculate	
  /	
  visualise	
  theory	
  
•  Essen&al	
  for	
  the	
  analysis	
  of	
  experiments	
  

….	
  compare	
  theore&cal	
  predic&on	
  and	
  experimental	
  measurements	
  
	
  
On	
  a	
  large	
  scale	
  ….	
  

……	
  modeling	
  /	
  simula&on	
  of	
  complex	
  systems	
  
	
  
Trend	
  
•  Increasing	
  compu&ng	
  power	
  
•  More	
  sophis&cated	
  theories	
  
•  More	
  complex	
  experiments	
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Scalability : Affordable Modern High Performance Computing 

Network	
  of	
  high	
  end	
  PCs	
  and	
  disks	
  	
  
N	
  CPUs,	
  M	
  TB	
  of	
  storage	
  

GPU	
  Compu&ng	
  
100(0)s	
  of	
  CPUs	
  

Parallel	
  Compu&ng	
  -­‐	
  two	
  rela&vely	
  affordable	
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Grid Computing 

3 Slides	
  
courtesy	
  B	
  
Becker	
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Moore’s Law : Computing power doubles every two years 

1982	
  à	
  2007	
  :	
  10	
  x	
  cheaper,	
  100	
  &mes	
  lighter,	
  	
  
100	
  x	
  faster,	
  1000	
  x	
  memory	
  (RAM)	
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Examples : Biomedicine  

Computer	
  simula&ons	
  have	
  been	
  employed,	
  for	
  example,	
  to	
  mimic	
  complex	
  neurological	
  processes	
  and	
  
reveal	
  the	
  rela&ve	
  strength	
  of	
  human	
  bone	
  structures,	
  development	
  of	
  poten&al	
  new	
  drugs,	
  etc.	
  This	
  
image	
  is	
  obtained	
  from	
  an	
  HPC	
  molecular	
  dynamics	
  simula&on	
  of	
  the	
  aa3	
  enzyme	
  from	
  Paracoccus	
  
Denitrificans	
  bacterium	
  and	
  the	
  box	
  representa&ve	
  of	
  the	
  3D	
  Cartesian	
  grid	
  of	
  points.	
  Image	
  courtesy	
  of	
  
Massimiliano	
  Porrini.	
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Examples : Energy - wind  

This computer-generated simulation shows the turbulent nature of wind turbine 
wakes. The simulation helped uncover potential differences in output between 
downstream 'waked' turbines and upstream turbines. 
Simulation by Patrick J. Moriarty and Matthew J. Churchfield, NREL 
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Examples : Energy - nuclear  

An	
  eleva&on	
  plot	
  of	
  the	
  highest	
  energy	
  neutron	
  flux	
  distribu&ons	
  from	
  an	
  axial	
  slice	
  of	
  a	
  
nuclear	
  reactor	
  core	
  is	
  shown	
  superimposed	
  over	
  the	
  same	
  slice	
  of	
  the	
  underlying	
  geometry.	
  
This	
  figure	
  shows	
  the	
  rapid	
  spa&al	
  varia&on	
  in	
  the	
  high	
  energy	
  neutron	
  distribu&on	
  between	
  
within	
  each	
  plate	
  along	
  with	
  the	
  more	
  slowly	
  varying,	
  global	
  distribu&on.	
  UNIC	
  allows	
  
researchers	
  to	
  capture	
  both	
  of	
  these	
  effects	
  simultaneously.	
  (Courtesy:	
  
Argonne	
  Na&onal	
  Lab/Flickr)	
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Examples : High energy physics  

Extreme	
  rela&vis&c	
  heavy ion collision modelled by Quantum Molecular Dynamics. Protons=red, Neutrons= 
white, Excited baryons=blue, Mesons=green. Models the creation of dense (excited) hadronic and mesonic 
matter at high temperatures, the creation and transport of rare particles and strangeness in hadronic matter. 
and the emission of electromagnetic probes 
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Examples : High energy physics  
GEANT4	
  Monte	
  Carlo	
  simula&on	
  of	
  the	
  ATLAS	
  detector	
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Lecture on Computational Physics  
Compu(ng	
  Pla;orm	
  
•  As	
  students,	
  aim	
  ul&mately	
  at	
  running	
  on	
  :	
  Clusters	
  /	
  GPUs	
  /	
  GRID	
  

è	
  UBUNTU	
  or	
  Mac	
  OS	
  
è Windows	
  /	
  Dual	
  boot	
  	
  
è Windows	
  /	
  Virtual	
  Machine	
  

	
  

Startup	
  Notes	
  
•  Simon’s	
  Beginners	
  Guide	
  	
  
(http://physics.uj.ac.za/wiki/psi/Computing/Start-upNotesOnProgrammingC)	
  
	
  

Tools	
  
•  Unix	
  shell	
  environment,	
  (later	
  development	
  environment)	
  

è	
  learn	
  about	
  20	
  shell	
  commands	
  
•  Text	
  Editor	
  (Windows	
  :	
  notepad++,	
  Unix	
  :	
  gedit,	
  (x)emacs,	
  vi(m)….)	
  

è	
  learn	
  to	
  create	
  and	
  edit	
  “ascii”	
  files	
  
•  C++	
  Programming	
  Language	
  (http://www.cplusplus.com/doc/tutorial/)	
  

è	
  learn	
  to	
  create	
  /	
  edit	
  /	
  debug	
  code	
  
•  Compiler,	
  Linker	
  

è	
  learn	
  about	
  “make”	
  files	
  
•  Numerical	
  Methods	
  (http://apps.nrbook.com/c/index.html )	
  

è	
  learn	
  to	
  libraries	
  as	
  white/grey	
  boxes	
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Practice ….. 
Create,	
  Edit	
  Text	
  file	
  
•  Use	
  the	
  examples	
  at	
  	
  
(http://physics.uj.ac.za/wiki/psi/Computing/Start-upNotesOnProgrammingC)	
  

and	
  
(http://www.cplusplus.com/doc/tutorial/)	
  
	
  
Learn	
  C++	
  by	
  doing	
  tutorials	
  
•  At	
  least	
  up	
  to	
  the	
  beginning	
  of	
  “Object	
  Oriented	
  Programming”	
  
(http://www.cplusplus.com/doc/tutorial/)	
  
	
  
Play	
  with	
  the	
  White	
  Dwarf	
  Applica(on	
  
•  Will	
  be	
  on	
  the	
  HDM2013	
  www-­‐site	
  



HDM 2014 : Computational Methods - ODEs

SH Connell

Ordinary Differential Equations

See Numerical Recipes - The Art of Scientific Computing by Press et al and Computational Physics by S
Koonin and D Meredith.

1 General 2nd order D.E.

Consider the following 2nd order differential equation :

d2y

dx2
+ q(x)

dy

dx
= r(x)

It can be rewritten as two coupled first order differential equations :

dy
dx = Z(x)

dz
dx = r(x)− q(x)Z(x)

Of course, don’t forget the boundary conditions.
A well known example is Newton’s Second Law of Motion, which can also be expressed by Hamilton’s
equations :

Newton II ⇒ md2z
dt2

= F (z) ⇒


dZ
dt = p/m

dP
dt = F (Z)

⇒ Hamilton eqns.

If the original 2nd order D.E. was in 3-dimensions, then there would be 6 coupled 1st order D.E.’s.
In general, we will consider that we have n coupled 1st order D.E’s to solve.

dỹ

dx
= f̃(x, ỹ)

↪→ solve dy
dx

= f(x, y) and generalise with matrix methods.

We will study ....

↪→ initial value problems (now)
boundary value problems (later)
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2 Euler’s Method

• conceptually important

• not recommended - inaccurate - unstable

We have the D.E. and initial condition :

dy

dx
= f(x, y), y(x0) ∼ c

which is discretised on a step size of h. The derivative is then replaced simply by its approximation
being the slope over that step size:

yn+1 − yn
h

+O(h2) = f(xn, yn).

We will call this the Euler step (see the Runge Kutta methods discussed later).

Figure 1: Eulers method. In this simplest (and least accurate) method for integrating an ODE, the
derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy. (Numerical Recipes Figure 16.1.1.)

This leads to the recursion relation

⇒ yn+1 = yn + hf(xn, yn) + 0(h2).

Since
h = [b− a]/n

the nett error is accumulated from the error at each step ∼ nO(h2) ∼ 1
h
O(h2) ∼ O(h).
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3 Runge-Kutte Methods

These are single step methods, there are a variety of algorithms, of the Taylor Series type.

dy
dx

= f(x, y(x)) → yn+1(x) = yn(x) +
∫ xn+1
xn f(x, y(x))dx

f(x) → Taylor Exp

2nd Order R-K

For example, perform the Taylor Expansion to 2nd Order, about the midpoint of the interval, once
with a half-step to the beginning of the interval, once with a half-step to the end of the interval.

y(xn) = y(xn+ 1
2
)− h

2

dy(x)

dx

∣∣∣∣xn+1
2

+
h2

8

d2y(x)

dx2
)
∣∣∣∣xn+1

2

+ . . .

y(xn+1) = y(xn+ 1
2
) +

h

2

dy(x)

dx

∣∣∣∣xn+1
2

+
h2

8

d2y(x)

dx2
)
∣∣∣∣xn+1

2

+ . . .

Rewriting ... and introducing an obvious notation ...

yn = yn+ 1
2
− h

2
f(xn+ 1

2
, yn+ 1

2
) +

h2

8
f ′(xn+ 1

2
, yn+ 1

2
) + . . .

yn+1 = yn+ 1
2

+
h

2
f(xn+ 1

2
, yn+ 1

2
) +

h2

8
f ′(xn+ 1

2
, yn+ 1

2
) + . . .

Subtracting ....
yn+1 = yn + hf(xn+ 1

2
, yn+ 1

2
) +O(h3)

We have achieved a higher order by using the symmetric expansion about the interval midpoint.
However, we do not know how to evaluate yn+ 1

2
, so we approximate this with a half Euler step.

yn+ 1
2

= yn +
1

2
k, k = Euler difference = hf(xn, yn)

We finally arrive at the 2nd Order Runge-Kutta method:

yn+1 = yn + hf(xn + 1
2
h, yn + 1

2
k) + 0(h3)

k = hf(xn, yn)

This has two function evaluations per step, but is quite accurate and stable.
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Figure 2: The 2nd Order R-K, or the Midpoint method. Second-order accuracy is obtained by using
the initial derivative each step to find a point halfway across the interval, then using the midpoint
derivative across the full width of the interval. In the figure, filled dots represent final function
values, while open dots represent function values that are discarded once their derivatives have been
calculated and used. (Numerical Recipes Figure 16.1.2.)

4th Order R-K

The principles of the 2nd Order R-K (using well chosen implementations of the Taylor series expansion
to develop R-K steps where higher orders of error terms are canceled out) can be carried further. For
example, in the 4th Order R-K, the following set of steps are implemented. The various steps are
self-explanatory :

k1 = hf(xnyn)

k2 = hf(xn + 1
2
h, yn + 1

2
k1)

k3 = hf(xn + 1
2
h, yn + 1

2
k2)

k4 = hf(xn + 1
2
h, yn + 1

2
k3)

yn+1 = yn + k1
6

+ k2
3

+ k3
3

+ k4
6

+O(h5)

These steps combine to cancel errors to O(h5)

A R-K based general O.D.E. Integrator

Additional features in the numerical integration of an O.D.E. is the estimation of the error at each
step and the implementation of an adaptive step size (based on this error estimation). An efficient
implementation of this, based on a 5th Order R-K (with the error for each step estimated by a 4th
Order R-K based on the same function evaluations) is presented in the Numerical Recipes book in
Chapter 16.2.
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Figure 3: Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives
the final function value (shown as a filled dot) is calculated. (Numerical Recipes Figure 16.1.3.)

void odeint(float ystart[], int nvar, float x1, float x2, float eps, float h1, float hmin, int *nok, int
*nbad, void (*derivs)(float, float [], float []), void (*rkqs)(float [], float [], int, float *, float, float, float
[], float *, float *, void (*)(float, float [], float [])))

(See this text for further details)
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4 Example : The Structure of White Dwarfs

A white dwarf is a possible destiny of certain stars, as given by theories on nucleo-syntheses and
stellar-evolution. It is a relatively cold star where the nucleo-synthesis process is completed. It
consists of a plasma of the heavy stable nuclei and their electrons.

In the simple model of this example, the white dwarf can be considered spherically symmetric, non-
rotating and magnetic fields are neglected. The structure is considered to be dominantly determined
by the hydrostatic equilibrium between gravitational pressure seeking to compress the stellar material
and Pauli pressure which resists this.

In this example, we will further imagine that the nucleo-synthesis process has run to completion
leaving the star dominantly composed of a single stable nucleus type terminating the fusion cycle (the
type of which depends on the mass of the star). For example, 12C or 56Fe.

The electrons are modeled as a T = 0 free Fermi gas, and they dominate the Pauli pressure term.

Under these conditions, it can be shown that the white dwarf stellar structure is contained in two
coupled first order differential equations for the radial mass and density distribution of the .

Considering firstly the radial mass distribution :
The mass of a sub-sphere to radius r < R0 is

m(r) = 4π
∫ r

0
ρ(r′)r′2dr′, (1)

from which we get the relationship of m and r by differentiating

dm

dr
= 4πr2ρ(r). (2)

Considering next the radial density distribution :
As in electrostatics, the gravitational force per unit volume at a given radial distance r from the
centre of the star is dependent on the amount of matter enclosed by a sphere of that same radius.

dP

dr
=
dF (r)

dV
= −Gm(r)

r2
ρ(r) (3)

We seek dρ
dr

. Considering the chain rule dP
dr

= dρ
dr
dP
dρ

, we write :

dρ

dr
= −

(
dP

dρ

)−1
Gm(r)ρ(r)

r2
(4)

We just require dp
dρ

, the equation of state for the white dwarf.

The initial condition ρ(r = 0) = ρc (and obviously m(r = 0) = 0) will determine the final mass M and

6



radius R of the star, M = m(R), by integration of the two coupled first order differential equations
for m(r) and ρ(r).

The equation of state is in fact the Pauli pressure term mentioned above.
To determine the Equation of State, we have assumed,

• The star consists of heavy nuclei and e−.

• The nuclei contribute to the mass, but not to the pressure.

• The e− contribute to the pressure, but not to the mass.

• The density is so high that e− are free.

We begin with the energy density of the electrons in units where h̄ = c = 1. The electron density is

n = Ye
ρ

mn

(5)

where Ye is the number of electrons per nucleon and mn is the nucleus mass. For a

56Fe star Ye =
26

56
(6)

12C star Ye =
1

2
(7)

The number of electrons = number of protons for charge neutrality.
If N is the number of electrons, the for a free Fermi gas we have :

N = 2V
∫ pf

0

d3p

(2π)3
(8)

where the Fermi momentum pf is

pf = (3π2n)
1
3 with n = N/V (9)

The energy density is then
E

V
= 2

∫ pf

0

d3p

(2π)3
(p2 +m2

e)
1/2. (10)

Upon integration of equation ??, we have

E

V
= n0mex

3ε(x) (11)

where

ε(x) =
3

8x3

[
x(1 + 2x2)(1 + x2)1/2 − log[x+ (1 + x2)1/2]

]
(12)
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and

x =
pf
me

=
(
n

n0

)1/3

=

(
ρ

ρ0

)1/3

(13)

with

n0 =
m3
e

3π2
= 5.89× 1029cm−3 and ρ0 =

mnn0

Ye
= 9.79× 105Y −1e gm cm−3. (14)

Thus x is the electron density in units of n0, chosen so that x = 1 corresponds to the Fermi momentum
pf being equal to the electron mass me (see equations ?? and ??). Noting that n = N/V , we see that

∂x

∂V
= − x

3V
(15)

According to thermodynamics, the pressure is the change in energy with volume, so that

P = −∂E
∂V

(16)

= −∂E
∂x

∂x

∂V

= 1
3
n0mex

4dε(x)

dx

Because the electron density scales with the density, x ≡ x(ρ), equation ?? is indeed the equation of
state. We can now evaluate

dP (ρ)

dρ
=

dP (x)

dx

dx(ρ)

dρ
(17)

= Ye ·
me

mn

· x2

3(1 + x2)1/2

The two coupled first order differential equations then become :

dm(r)

dr
= 4πr2ρ(r) (18)

and
dρ(r)

dr
= − G

Ye(me/mn)
· m(r)

r2
ρ(r)

γ(x(ρ))

where

γ(x) =
x2

3(1 + x2)1/2
. (19)

Converting to dimensionless variables r̄, ρ̄ and m̄ for the stellar radius, density and mass,

dm̄

dr̄
= r̄2ρ̄ (20)

and
dρ̄

dr̄
= − m̄ρ̄

γr̄2

8



where
r = R0r̄, ρ = ρ0ρ̄, m = M0m̄, x = ρ̄1/3 (21)

and the scale factors have been chosen to achieve unit coefficients in equation ??,

R0 =

[
Ye(me/mn)

4πGρ0

]1/2
= 7.72× 108Yecm, (22)

M0 = 4πR3
0ρ0 = 5.67× 1033Y 2

e gm

ρ0 =
mnn0

Ye
= 9.79× 105Y −1e gm cm−3.

Note that solutions for different values of Ye may all be scaled from Ye = 1.

Development of the Solution

The solutions to the questions below are available to registered course participants in the protected
pages for the course.

a) As a partial approximate analytic solution, find the leading terms in the ε(x) and γ(x) expres-
sions for the non-relativistic (x� 1) limit and discuss the plausibility of the results. Using the
result for small ρ̄, i.e. finding an analytic approximation near the surface with m̄ and r̄ finite,
and working from equations ??, show the white dwarf has a well defined surface and find the
functional dependence of ρ̄ near the surface.

b) Solve numerically for ρ̄(r̄) and m̄(r̄). Mention any steps you could take, of a numerical nature,
that would generate confidence in the numerical result. Calculate the stellar total mass and ra-
dius for centre densities ρ̄c = ρ̄(0) in the range 10−1 to 106. Does the behaviour of the solution
correspond to your approximate analytical solution ? (explain).

c) Deduce the composition of Sirius B (dominantly iron or carbon). The measured parameters for
Sirius B are R = 0.0074(6)R�, M = 1.05(3)M�. The values have been given in solar units,
where

R� = 6.95× 1010cm, (23)

M� = 1.98× 1033gm.

d) Investigate the behaviour of the mass and radius of the white dwarf for large central densities.
You will find the mass approaches a limit and the radius collapses. Deduce the Chandrasekhar
limit for the mass and central density of the white dwarf star. The destiny of such a large star
would be a neutron star.

9



e) Explain the previous result using a simple model where the density profile is constant dρ̄/dr̄ =
M/V . Calculate the total energy U +W of the star where

U =
∫ R

0

(
E

V

)
4πr2dr (24)

arises from the repulsive Pauli pressure and

W = −
∫ R

0

Gm(r)

r2
ρ(r)4πr2dr (25)

arises from the attractive gravitational potential. Show that for a given total mass M and at
large densities (extreme relativistic limit) then both terms have a 1/R dependence and predict
the Chandrasekhar collapse for large enough M .

10
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 

à	
  Surface	
  well	
  defined	
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 

This	
  model	
  finds	
  ……	
  2	
  M0	
  *	
  Ye	
  ~	
  5	
  x	
  1030kg	
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 
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The Higgs Boson and beyond …….. 
SH Connell  

Computa(onal	
  Physics	
  
	
  
Want	
  you	
  learned	
  
•  Computers	
  are	
  becoming	
  MUCH	
  more	
  powerful	
  
•  Computa&onal	
  Physics	
  is	
  becoming	
  MUCH	
  more	
  necessary	
  
•  You	
  will	
  be	
  lek	
  behind	
  if	
  you	
  don’t	
  develop	
  the	
  skills	
  
•  You	
  will	
  be	
  very	
  marketable	
  if	
  you	
  do	
  
	
  
Homework	
  
•  Do	
  the	
  C++	
  Tutorial	
  and	
  the	
  White	
  Dwarf	
  Example	
  
•  Modify	
  it	
  yourself	
  for	
  Neutron	
  Stars	
  
•  Con&nue	
  to	
  develop	
  you	
  self-­‐taught	
  compu&ng	
  skills.	
  


