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The Higgs Boson and beyond …….. 
SH Connell  

Computa(onal	  Physics	  
	  
Why	  
•  Essen&al	  to	  calculate	  /	  visualise	  theory	  
•  Essen&al	  for	  the	  analysis	  of	  experiments	  

….	  compare	  theore&cal	  predic&on	  and	  experimental	  measurements	  
	  
On	  a	  large	  scale	  ….	  

……	  modeling	  /	  simula&on	  of	  complex	  systems	  
	  
Trend	  
•  Increasing	  compu&ng	  power	  
•  More	  sophis&cated	  theories	  
•  More	  complex	  experiments	  
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Scalability : Affordable Modern High Performance Computing 

Network	  of	  high	  end	  PCs	  and	  disks	  	  
N	  CPUs,	  M	  TB	  of	  storage	  

GPU	  Compu&ng	  
100(0)s	  of	  CPUs	  

Parallel	  Compu&ng	  -‐	  two	  rela&vely	  affordable	  	  



2014/11/27 Simon Connell - Comp Phys - HDM 2014 3 

Grid Computing 

3 Slides	  
courtesy	  B	  
Becker	  



2014/11/27 Simon Connell - Comp Phys - HDM 2014 4 

Moore’s Law : Computing power doubles every two years 

1982	  à	  2007	  :	  10	  x	  cheaper,	  100	  &mes	  lighter,	  	  
100	  x	  faster,	  1000	  x	  memory	  (RAM)	  
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Examples : Biomedicine  

Computer	  simula&ons	  have	  been	  employed,	  for	  example,	  to	  mimic	  complex	  neurological	  processes	  and	  
reveal	  the	  rela&ve	  strength	  of	  human	  bone	  structures,	  development	  of	  poten&al	  new	  drugs,	  etc.	  This	  
image	  is	  obtained	  from	  an	  HPC	  molecular	  dynamics	  simula&on	  of	  the	  aa3	  enzyme	  from	  Paracoccus	  
Denitrificans	  bacterium	  and	  the	  box	  representa&ve	  of	  the	  3D	  Cartesian	  grid	  of	  points.	  Image	  courtesy	  of	  
Massimiliano	  Porrini.	  
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Examples : Energy - wind  

This computer-generated simulation shows the turbulent nature of wind turbine 
wakes. The simulation helped uncover potential differences in output between 
downstream 'waked' turbines and upstream turbines. 
Simulation by Patrick J. Moriarty and Matthew J. Churchfield, NREL 
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Examples : Energy - nuclear  

An	  eleva&on	  plot	  of	  the	  highest	  energy	  neutron	  flux	  distribu&ons	  from	  an	  axial	  slice	  of	  a	  
nuclear	  reactor	  core	  is	  shown	  superimposed	  over	  the	  same	  slice	  of	  the	  underlying	  geometry.	  
This	  figure	  shows	  the	  rapid	  spa&al	  varia&on	  in	  the	  high	  energy	  neutron	  distribu&on	  between	  
within	  each	  plate	  along	  with	  the	  more	  slowly	  varying,	  global	  distribu&on.	  UNIC	  allows	  
researchers	  to	  capture	  both	  of	  these	  effects	  simultaneously.	  (Courtesy:	  
Argonne	  Na&onal	  Lab/Flickr)	  
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Examples : High energy physics  

Extreme	  rela&vis&c	  heavy ion collision modelled by Quantum Molecular Dynamics. Protons=red, Neutrons= 
white, Excited baryons=blue, Mesons=green. Models the creation of dense (excited) hadronic and mesonic 
matter at high temperatures, the creation and transport of rare particles and strangeness in hadronic matter. 
and the emission of electromagnetic probes 
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Examples : High energy physics  
GEANT4	  Monte	  Carlo	  simula&on	  of	  the	  ATLAS	  detector	  
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Lecture on Computational Physics  
Compu(ng	  Pla;orm	  
•  As	  students,	  aim	  ul&mately	  at	  running	  on	  :	  Clusters	  /	  GPUs	  /	  GRID	  

è	  UBUNTU	  or	  Mac	  OS	  
è Windows	  /	  Dual	  boot	  	  
è Windows	  /	  Virtual	  Machine	  

	  

Startup	  Notes	  
•  Simon’s	  Beginners	  Guide	  	  
(http://physics.uj.ac.za/wiki/psi/Computing/Start-upNotesOnProgrammingC)	  
	  

Tools	  
•  Unix	  shell	  environment,	  (later	  development	  environment)	  

è	  learn	  about	  20	  shell	  commands	  
•  Text	  Editor	  (Windows	  :	  notepad++,	  Unix	  :	  gedit,	  (x)emacs,	  vi(m)….)	  

è	  learn	  to	  create	  and	  edit	  “ascii”	  files	  
•  C++	  Programming	  Language	  (http://www.cplusplus.com/doc/tutorial/)	  

è	  learn	  to	  create	  /	  edit	  /	  debug	  code	  
•  Compiler,	  Linker	  

è	  learn	  about	  “make”	  files	  
•  Numerical	  Methods	  (http://apps.nrbook.com/c/index.html )	  

è	  learn	  to	  libraries	  as	  white/grey	  boxes	  
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Practice ….. 
Create,	  Edit	  Text	  file	  
•  Use	  the	  examples	  at	  	  
(http://physics.uj.ac.za/wiki/psi/Computing/Start-upNotesOnProgrammingC)	  

and	  
(http://www.cplusplus.com/doc/tutorial/)	  
	  
Learn	  C++	  by	  doing	  tutorials	  
•  At	  least	  up	  to	  the	  beginning	  of	  “Object	  Oriented	  Programming”	  
(http://www.cplusplus.com/doc/tutorial/)	  
	  
Play	  with	  the	  White	  Dwarf	  Applica(on	  
•  Will	  be	  on	  the	  HDM2013	  www-‐site	  



HDM 2014 : Computational Methods - ODEs

SH Connell

Ordinary Differential Equations

See Numerical Recipes - The Art of Scientific Computing by Press et al and Computational Physics by S
Koonin and D Meredith.

1 General 2nd order D.E.

Consider the following 2nd order differential equation :

d2y

dx2
+ q(x)

dy

dx
= r(x)

It can be rewritten as two coupled first order differential equations :

dy
dx = Z(x)

dz
dx = r(x)− q(x)Z(x)

Of course, don’t forget the boundary conditions.
A well known example is Newton’s Second Law of Motion, which can also be expressed by Hamilton’s
equations :

Newton II ⇒ md2z
dt2

= F (z) ⇒


dZ
dt = p/m

dP
dt = F (Z)

⇒ Hamilton eqns.

If the original 2nd order D.E. was in 3-dimensions, then there would be 6 coupled 1st order D.E.’s.
In general, we will consider that we have n coupled 1st order D.E’s to solve.

dỹ

dx
= f̃(x, ỹ)

↪→ solve dy
dx

= f(x, y) and generalise with matrix methods.

We will study ....

↪→ initial value problems (now)
boundary value problems (later)
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2 Euler’s Method

• conceptually important

• not recommended - inaccurate - unstable

We have the D.E. and initial condition :

dy

dx
= f(x, y), y(x0) ∼ c

which is discretised on a step size of h. The derivative is then replaced simply by its approximation
being the slope over that step size:

yn+1 − yn
h

+O(h2) = f(xn, yn).

We will call this the Euler step (see the Runge Kutta methods discussed later).

Figure 1: Eulers method. In this simplest (and least accurate) method for integrating an ODE, the
derivative at the starting point of each interval is extrapolated to find the next function value. The
method has first-order accuracy. (Numerical Recipes Figure 16.1.1.)

This leads to the recursion relation

⇒ yn+1 = yn + hf(xn, yn) + 0(h2).

Since
h = [b− a]/n

the nett error is accumulated from the error at each step ∼ nO(h2) ∼ 1
h
O(h2) ∼ O(h).
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3 Runge-Kutte Methods

These are single step methods, there are a variety of algorithms, of the Taylor Series type.

dy
dx

= f(x, y(x)) → yn+1(x) = yn(x) +
∫ xn+1
xn f(x, y(x))dx

f(x) → Taylor Exp

2nd Order R-K

For example, perform the Taylor Expansion to 2nd Order, about the midpoint of the interval, once
with a half-step to the beginning of the interval, once with a half-step to the end of the interval.

y(xn) = y(xn+ 1
2
)− h

2

dy(x)

dx

∣∣∣∣xn+1
2

+
h2

8

d2y(x)

dx2
)
∣∣∣∣xn+1

2

+ . . .

y(xn+1) = y(xn+ 1
2
) +

h

2

dy(x)

dx

∣∣∣∣xn+1
2

+
h2

8

d2y(x)

dx2
)
∣∣∣∣xn+1

2

+ . . .

Rewriting ... and introducing an obvious notation ...

yn = yn+ 1
2
− h

2
f(xn+ 1

2
, yn+ 1

2
) +

h2

8
f ′(xn+ 1

2
, yn+ 1

2
) + . . .

yn+1 = yn+ 1
2

+
h

2
f(xn+ 1

2
, yn+ 1

2
) +

h2

8
f ′(xn+ 1

2
, yn+ 1

2
) + . . .

Subtracting ....
yn+1 = yn + hf(xn+ 1

2
, yn+ 1

2
) +O(h3)

We have achieved a higher order by using the symmetric expansion about the interval midpoint.
However, we do not know how to evaluate yn+ 1

2
, so we approximate this with a half Euler step.

yn+ 1
2

= yn +
1

2
k, k = Euler difference = hf(xn, yn)

We finally arrive at the 2nd Order Runge-Kutta method:

yn+1 = yn + hf(xn + 1
2
h, yn + 1

2
k) + 0(h3)

k = hf(xn, yn)

This has two function evaluations per step, but is quite accurate and stable.
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Figure 2: The 2nd Order R-K, or the Midpoint method. Second-order accuracy is obtained by using
the initial derivative each step to find a point halfway across the interval, then using the midpoint
derivative across the full width of the interval. In the figure, filled dots represent final function
values, while open dots represent function values that are discarded once their derivatives have been
calculated and used. (Numerical Recipes Figure 16.1.2.)

4th Order R-K

The principles of the 2nd Order R-K (using well chosen implementations of the Taylor series expansion
to develop R-K steps where higher orders of error terms are canceled out) can be carried further. For
example, in the 4th Order R-K, the following set of steps are implemented. The various steps are
self-explanatory :

k1 = hf(xnyn)

k2 = hf(xn + 1
2
h, yn + 1

2
k1)

k3 = hf(xn + 1
2
h, yn + 1

2
k2)

k4 = hf(xn + 1
2
h, yn + 1

2
k3)

yn+1 = yn + k1
6

+ k2
3

+ k3
3

+ k4
6

+O(h5)

These steps combine to cancel errors to O(h5)

A R-K based general O.D.E. Integrator

Additional features in the numerical integration of an O.D.E. is the estimation of the error at each
step and the implementation of an adaptive step size (based on this error estimation). An efficient
implementation of this, based on a 5th Order R-K (with the error for each step estimated by a 4th
Order R-K based on the same function evaluations) is presented in the Numerical Recipes book in
Chapter 16.2.
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Figure 3: Fourth-order Runge-Kutta method. In each step the derivative is evaluated four times:
once at the initial point, twice at trial midpoints, and once at a trial endpoint. From these derivatives
the final function value (shown as a filled dot) is calculated. (Numerical Recipes Figure 16.1.3.)

void odeint(float ystart[], int nvar, float x1, float x2, float eps, float h1, float hmin, int *nok, int
*nbad, void (*derivs)(float, float [], float []), void (*rkqs)(float [], float [], int, float *, float, float, float
[], float *, float *, void (*)(float, float [], float [])))

(See this text for further details)
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4 Example : The Structure of White Dwarfs

A white dwarf is a possible destiny of certain stars, as given by theories on nucleo-syntheses and
stellar-evolution. It is a relatively cold star where the nucleo-synthesis process is completed. It
consists of a plasma of the heavy stable nuclei and their electrons.

In the simple model of this example, the white dwarf can be considered spherically symmetric, non-
rotating and magnetic fields are neglected. The structure is considered to be dominantly determined
by the hydrostatic equilibrium between gravitational pressure seeking to compress the stellar material
and Pauli pressure which resists this.

In this example, we will further imagine that the nucleo-synthesis process has run to completion
leaving the star dominantly composed of a single stable nucleus type terminating the fusion cycle (the
type of which depends on the mass of the star). For example, 12C or 56Fe.

The electrons are modeled as a T = 0 free Fermi gas, and they dominate the Pauli pressure term.

Under these conditions, it can be shown that the white dwarf stellar structure is contained in two
coupled first order differential equations for the radial mass and density distribution of the .

Considering firstly the radial mass distribution :
The mass of a sub-sphere to radius r < R0 is

m(r) = 4π
∫ r

0
ρ(r′)r′2dr′, (1)

from which we get the relationship of m and r by differentiating

dm

dr
= 4πr2ρ(r). (2)

Considering next the radial density distribution :
As in electrostatics, the gravitational force per unit volume at a given radial distance r from the
centre of the star is dependent on the amount of matter enclosed by a sphere of that same radius.

dP

dr
=
dF (r)

dV
= −Gm(r)

r2
ρ(r) (3)

We seek dρ
dr

. Considering the chain rule dP
dr

= dρ
dr
dP
dρ

, we write :

dρ

dr
= −

(
dP

dρ

)−1
Gm(r)ρ(r)

r2
(4)

We just require dp
dρ

, the equation of state for the white dwarf.

The initial condition ρ(r = 0) = ρc (and obviously m(r = 0) = 0) will determine the final mass M and
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radius R of the star, M = m(R), by integration of the two coupled first order differential equations
for m(r) and ρ(r).

The equation of state is in fact the Pauli pressure term mentioned above.
To determine the Equation of State, we have assumed,

• The star consists of heavy nuclei and e−.

• The nuclei contribute to the mass, but not to the pressure.

• The e− contribute to the pressure, but not to the mass.

• The density is so high that e− are free.

We begin with the energy density of the electrons in units where h̄ = c = 1. The electron density is

n = Ye
ρ

mn

(5)

where Ye is the number of electrons per nucleon and mn is the nucleus mass. For a

56Fe star Ye =
26

56
(6)

12C star Ye =
1

2
(7)

The number of electrons = number of protons for charge neutrality.
If N is the number of electrons, the for a free Fermi gas we have :

N = 2V
∫ pf

0

d3p

(2π)3
(8)

where the Fermi momentum pf is

pf = (3π2n)
1
3 with n = N/V (9)

The energy density is then
E

V
= 2

∫ pf

0

d3p

(2π)3
(p2 +m2

e)
1/2. (10)

Upon integration of equation ??, we have

E

V
= n0mex

3ε(x) (11)

where

ε(x) =
3

8x3

[
x(1 + 2x2)(1 + x2)1/2 − log[x+ (1 + x2)1/2]

]
(12)
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and

x =
pf
me

=
(
n

n0

)1/3

=

(
ρ

ρ0

)1/3

(13)

with

n0 =
m3
e

3π2
= 5.89× 1029cm−3 and ρ0 =

mnn0

Ye
= 9.79× 105Y −1e gm cm−3. (14)

Thus x is the electron density in units of n0, chosen so that x = 1 corresponds to the Fermi momentum
pf being equal to the electron mass me (see equations ?? and ??). Noting that n = N/V , we see that

∂x

∂V
= − x

3V
(15)

According to thermodynamics, the pressure is the change in energy with volume, so that

P = −∂E
∂V

(16)

= −∂E
∂x

∂x

∂V

= 1
3
n0mex

4dε(x)

dx

Because the electron density scales with the density, x ≡ x(ρ), equation ?? is indeed the equation of
state. We can now evaluate

dP (ρ)

dρ
=

dP (x)

dx

dx(ρ)

dρ
(17)

= Ye ·
me

mn

· x2

3(1 + x2)1/2

The two coupled first order differential equations then become :

dm(r)

dr
= 4πr2ρ(r) (18)

and
dρ(r)

dr
= − G

Ye(me/mn)
· m(r)

r2
ρ(r)

γ(x(ρ))

where

γ(x) =
x2

3(1 + x2)1/2
. (19)

Converting to dimensionless variables r̄, ρ̄ and m̄ for the stellar radius, density and mass,

dm̄

dr̄
= r̄2ρ̄ (20)

and
dρ̄

dr̄
= − m̄ρ̄

γr̄2
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where
r = R0r̄, ρ = ρ0ρ̄, m = M0m̄, x = ρ̄1/3 (21)

and the scale factors have been chosen to achieve unit coefficients in equation ??,

R0 =

[
Ye(me/mn)

4πGρ0

]1/2
= 7.72× 108Yecm, (22)

M0 = 4πR3
0ρ0 = 5.67× 1033Y 2

e gm

ρ0 =
mnn0

Ye
= 9.79× 105Y −1e gm cm−3.

Note that solutions for different values of Ye may all be scaled from Ye = 1.

Development of the Solution

The solutions to the questions below are available to registered course participants in the protected
pages for the course.

a) As a partial approximate analytic solution, find the leading terms in the ε(x) and γ(x) expres-
sions for the non-relativistic (x� 1) limit and discuss the plausibility of the results. Using the
result for small ρ̄, i.e. finding an analytic approximation near the surface with m̄ and r̄ finite,
and working from equations ??, show the white dwarf has a well defined surface and find the
functional dependence of ρ̄ near the surface.

b) Solve numerically for ρ̄(r̄) and m̄(r̄). Mention any steps you could take, of a numerical nature,
that would generate confidence in the numerical result. Calculate the stellar total mass and ra-
dius for centre densities ρ̄c = ρ̄(0) in the range 10−1 to 106. Does the behaviour of the solution
correspond to your approximate analytical solution ? (explain).

c) Deduce the composition of Sirius B (dominantly iron or carbon). The measured parameters for
Sirius B are R = 0.0074(6)R�, M = 1.05(3)M�. The values have been given in solar units,
where

R� = 6.95× 1010cm, (23)

M� = 1.98× 1033gm.

d) Investigate the behaviour of the mass and radius of the white dwarf for large central densities.
You will find the mass approaches a limit and the radius collapses. Deduce the Chandrasekhar
limit for the mass and central density of the white dwarf star. The destiny of such a large star
would be a neutron star.

9



e) Explain the previous result using a simple model where the density profile is constant dρ̄/dr̄ =
M/V . Calculate the total energy U +W of the star where

U =
∫ R

0

(
E

V

)
4πr2dr (24)

arises from the repulsive Pauli pressure and

W = −
∫ R

0

Gm(r)

r2
ρ(r)4πr2dr (25)

arises from the attractive gravitational potential. Show that for a given total mass M and at
large densities (extreme relativistic limit) then both terms have a 1/R dependence and predict
the Chandrasekhar collapse for large enough M .

10
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 

à	  Surface	  well	  defined	  
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White Dwarf : Solution 
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White Dwarf : Solution 



2014/11/27 Simon Connell - Comp Phys - HDM 2014 17 

White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 

This	  model	  finds	  ……	  2	  M0	  *	  Ye	  ~	  5	  x	  1030kg	  	  
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 
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White Dwarf : Solution 
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The Higgs Boson and beyond …….. 
SH Connell  

Computa(onal	  Physics	  
	  
Want	  you	  learned	  
•  Computers	  are	  becoming	  MUCH	  more	  powerful	  
•  Computa&onal	  Physics	  is	  becoming	  MUCH	  more	  necessary	  
•  You	  will	  be	  lek	  behind	  if	  you	  don’t	  develop	  the	  skills	  
•  You	  will	  be	  very	  marketable	  if	  you	  do	  
	  
Homework	  
•  Do	  the	  C++	  Tutorial	  and	  the	  White	  Dwarf	  Example	  
•  Modify	  it	  yourself	  for	  Neutron	  Stars	  
•  Con&nue	  to	  develop	  you	  self-‐taught	  compu&ng	  skills.	  


