Physics Honours: Standard Model

Tutorial Sheet 3

Question 1

Show the following relationships between the unitary and hermitian matrices:
a) Any $n \times n$ unitary matrix $U^{\dagger} U=1$ can be written as

$$
U=\exp (i H)
$$

where H is hermitian, $H^{\dagger}=H$.
b) $\operatorname{det} U=1$ implies that H is traceless.

Remark: This result means that $n \times n$ unitary matrices with unit determinant can be generated by $n \times n$ traceless hermitian matrices.

Question 2

The $n \times n$ unitary matrices with unit determinant form the $S U(n)$ group.
a) Show that it has $n^{2}-1$ independent group parameters.
b) Show that the maximum number of mutually commuting matrices in an $S U(n)$ group is ($n-1$). (This is the rank of the group.)

Question 3

This problem illustrates the special property of the $S U(2)$ representations, their being equivalent to their complex conjugate representations.
a) For every 2×2 unitary matrix U with unit determinant, show there exists a matrix S which connects U to its complex conjugate matrix U^{*} through the similarity transformation

$$
S^{-1} U S=U^{*}
$$

b) Suppose ψ_{1} and ψ_{2} are the bases for the spin- $\frac{1}{2}$ representation of $S U(2)$ having eigenvalues of $\pm \frac{1}{2}$ for the diagonal generator T_{3};

$$
T_{3} \psi_{1}=\frac{1}{2} \psi_{1} \text { and } T_{3} \psi_{2}=-\frac{1}{2} \psi_{2}
$$

calculate the eigenvalues of T_{3} operating on ψ_{1}^{*} and ψ_{2}^{*}, respectively.

Question 4

a) Show that if A and B are two $n \times n$ matrices, we have the Baker-Hausdorff relation

$$
e^{i A} B e^{-i A}=B+i[A, B]+\frac{i}{2!}[A,[A, B]]+\ldots+\frac{i^{n}}{n!}[A,[A, \ldots[A, B] \ldots]]+\ldots
$$

b) Show that the matrix B is invariant (up to a phase) under the transformations generated by the matrix A, if these two matrices satisfy the commutation relation of $[A, B]=B$.

Question 5

Prove the identity for 2×2 unitary matrices generated by Pauli matrices $\vec{\sigma}=\left(\sigma_{1}, \sigma_{2}, \sigma_{3}\right)$:

$$
\exp (i \vec{r} \cdot \vec{\sigma})=\cos r+(\hat{r} \cdot \vec{\sigma}) \sin r
$$

where $r=|\vec{r}|$ is the magnitude of the vector \vec{r} and $\hat{r}=\vec{r} / r$ is the unit vector.

Question 6

Consider the non-relativistic Schrödinger equation

$$
i \hbar \frac{\partial}{\partial t} \psi(\vec{r}, t)=\left[-\frac{\hbar^{2}}{2 m} \nabla^{2}+V(\vec{r})\right] \psi(\vec{r}, t)
$$

Obtain the conserved probability 4-current

$$
\begin{aligned}
j^{\mu} & \equiv(c \rho, \vec{j}) \\
\rho=\psi^{*} \psi \quad ; \quad \vec{j} & =\frac{\hbar}{2 i m}\left(\psi^{*} \vec{\nabla} \psi-\psi \vec{\nabla} \psi^{*}\right)
\end{aligned}
$$

Answers

Question 1

a) The matrix U can always be diagonalised by some unitary matrix V

$$
V U V^{\dagger}=U_{d}
$$

where U_{d} is a diagonal matrix satisfying the unitarity condition $U_{d} U_{d}^{\dagger}=1$. This implies that each of the diagonal elements can be expressed as a complex number with unit magnitude $e^{i \alpha}$.

$$
U_{d}=\left(\begin{array}{llll}
e^{i \alpha_{1}} & & & \\
& e^{i \alpha_{2}} & & \\
& & \ddots & \\
& & & e^{i \alpha_{n}}
\end{array}\right)
$$

where α_{i} 's are real. It is then straightforward to see the equality $U_{d}=e^{i H_{d}}$, where H_{d} is a real diagonal matrix: $H_{d}=\operatorname{diag}\left(\alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right)$. We then have

$$
U=V^{\dagger} U_{d} V=V^{\dagger} e^{i H_{d}} V=e^{i H}
$$

with $H=V^{\dagger} H_{d} V$. Because H_{d} is real and diagonal, the matrix H is hermitian:

$$
H^{\dagger}=\left(V^{\dagger} H_{d} V\right)^{\dagger}=V^{\dagger} H_{d}^{\dagger} V=H
$$

b) From the matrix identity $e^{\operatorname{Tr} A}=\operatorname{det}\left(e^{A}\right)$, we have for $U=e^{i H}$

$$
e^{i \operatorname{Tr} H}=\operatorname{det}\left(e^{i H}\right)=\operatorname{det} U
$$

Thus $\operatorname{det} U=1$ implies that $\operatorname{Tr} H=0$.

Question 2

a) To count the number of independent group parameters, it is easier to do so through the generator matrix. From the previous problem, we have $U=e^{i H}$, where H is an $n \times n$ traceless hermitian matrix. For a general hermitian matrix, the diagonal elements must be real, $H_{i i}=H_{i i}^{*}$. Because of the traceless condition, this corresponds to $(n-1)$ independent parameters. There are altogether $\left(n^{2}-n\right)$ off-diagonal elements and thus $\left(n^{2}-n\right)$ independent parameters because each complex element corresponds to two real parameters, yet this factor of two is cancelled by the hermitian conditions $H_{i j}=H_{j i}^{*}$. Consequently, we have a total of $\left(n-1+n^{2}-n\right)=\left(n^{2}-1\right)$ independent parameters.
b) From the discussion in part a) we already know that there are $n-1$ independent diagonal $S U(n)$ matrices, which obviously must be mutually commutative. On the other hand, if there were more than $n-1$ mutually commuting matrices, they could all be diagonalised simultaneously, thus yielding more than $n-1$ independent diagonal matrices. This is impossible for $n \times n$ traceless hermitian generating matrices.

Question 3

a) We will prove this by explicit construction. Question 1 taught us that the unitary matrix U can be expressed in terms of its generating matrix $U=\exp i H$. Thus the matrix S, if it exists, must have the property of

$$
S^{-1} H S=-H^{*}
$$

so that $S^{-1} U S=S^{-1}(\exp i H) S=U^{*}=\exp \left(-i H^{*}\right)$. The generating matrix H, being a 2×2 traceless hermitian matrix, can be expanded in terms of the Pauli matrices

$$
H=a_{1} \sigma_{1}+a_{2} \sigma_{2}+a_{3} \sigma_{3}
$$

with real coefficients of expansion a_{i}. Since σ_{1} and σ_{3} are real, σ_{2} imaginary, we have

$$
H^{*}=a_{1} \sigma_{1}-a_{2} \sigma_{2}+a_{3} \sigma_{3}
$$

The top equation ca be translated into relations between S and Pauli matrices: $S^{-1} \sigma_{1} S=-\sigma_{1}, S^{-1} \sigma_{2} S=\sigma_{2}$ and $S^{-1} \sigma_{3} S=-\sigma_{3}$. Namely, the matrix S must commute with σ_{2} and anticommute with σ_{1} and σ_{3}. This can be satisfied with

$$
S=c \sigma_{2}
$$

where c is some arbitrary constant. If we choose $c=1$, the matrix S is unitary and hermitian; for $c=i, S$ is real.
b) The statement ' ψ_{1} and ψ_{2} are the bases for the spin- $\frac{1}{2}$ representation of $S U(2)$ ' means that under an $S U(2)$ transformation $(i=1,2)$

$$
\psi_{i} \rightarrow \psi_{i}^{\prime}=U_{i j} \psi_{j} \text { with } U=\exp (i \vec{\alpha} \cdot \vec{\sigma})
$$

In matrix notation, this is $\psi^{\prime}=U \psi$. The complex conjugate equation is then

$$
\psi^{\prime *}=U^{*} \psi^{*}=\left(S^{-1} U S\right) \psi^{*} \text { or }\left(S \psi^{\prime *}\right)=U\left(S \psi^{*}\right)
$$

This means that $S \psi^{*}$ has the same transformation properties as ψ. Explicitly, with $S=i \sigma_{2}$, we have

$$
S \psi^{*}=\left(\begin{array}{cc}
0 & 1 \\
-1 & 0
\end{array}\right)\binom{\psi_{1}^{*}}{\psi_{2}^{*}}=\binom{\psi_{2}^{*}}{-\psi_{1}^{*}}
$$

To say that it has the same transformation properties as

$$
\binom{\psi_{1}}{\psi_{2}}
$$

means that, for example,

$$
T_{3}\binom{\psi_{2}^{*}}{-\psi_{1}^{*}}=\left(\begin{array}{cc}
1 / 2 & 0 \\
0 & -1 / 2
\end{array}\right)\binom{\psi_{2}^{*}}{-\psi_{1}^{*}}
$$

Namely, the eigenvalues of the T_{3} generators are

$$
\begin{aligned}
& t_{3}\left(\psi_{2}^{*}\right)=t_{3}\left(\psi_{1}\right)=\frac{1}{2} \\
& t_{3}\left(\psi_{1}^{*}\right)=t_{3}\left(\psi_{2}\right)=-\frac{1}{2}
\end{aligned}
$$

Remark: This shows that the $T=\frac{1}{2}$ representation is equivalent to its complex conjugate representation. We say that it is a real representation. This property can be extended to all other representations of the $S U(2)$ group, because all other representations can be obtained from the $T=\frac{1}{2}$ representation by tensor product. Part b) shows that the matrix S transforms any real diagonal matrix, e.g. σ_{3}, into the negative of itself. In other words, S will transform any eigenvalue to its negative. Thus the existence of such a matrix S requires that the eigenvalues of the hermitian-generating matrix occur in pairs of the form $\pm \alpha_{1}, \pm \alpha_{2}, \ldots$ (or are zero). It is then clear that for groups $S U(n)$ with $n \geq 3$, such a matrix S cannot exist as eigenvalues of higher-rank special unitary groups do not have such a special pairwise structure.

Question 4

a) The matrix J, defined as $J(\lambda) \equiv e^{i \lambda A} B e^{-i \lambda A}$, begin a function of some real parameter λ, can be differentiated to yield:

$$
\begin{gathered}
\frac{d J}{d \lambda}=\left.e^{i \lambda A} i[A, B] e^{-i \lambda A} \Rightarrow \frac{d J}{d \lambda}\right|_{\lambda=0}=i[A, B] \equiv i C_{1} \\
\frac{d^{2} J}{d \lambda^{2}}=\left.e^{i \lambda A} i^{2}[A,[A, B]] e^{-i \lambda A} \Rightarrow \frac{d^{2} J}{d \lambda^{2}}\right|_{\lambda=0}=i^{2}[A,[A, B]] \equiv i^{2} C_{2} \\
\vdots \\
\frac{d^{n} J}{d \lambda^{n}}=\left.e^{i \lambda A} i^{n}\left[A, C_{n-1}\right] e^{-i \lambda A} \Rightarrow \frac{d^{n} J}{d \lambda^{n}}\right|_{\lambda=0}=i^{n}\left[A, C_{n-1}\right] \equiv i^{n} C_{1}
\end{gathered}
$$

Expand $J(\lambda)$ in a Taylor series:

$$
J(\lambda)=\left.\sum_{n=0}^{\infty} \frac{d^{n} J}{d \lambda^{n}}\right|_{\lambda=0} \frac{\lambda^{n}}{n!}=\sum_{n=0}^{\infty} i^{n} C_{n} \frac{\lambda^{n}}{n!}
$$

where $C_{0}=B, C_{1}=[A, B]$ and $C_{n}=\left[A, C_{n-1}\right]$. Setting $\lambda=1$, we have the desired result

$$
e^{i A} B e^{-i A}=B+i[A, B]+\frac{i^{2}}{2!}[A,[A, B]]+\ldots
$$

b) To show that 'the matrix B is invariant (up to a phase) under transformations generated by matrix A ' means to show that

$$
e^{i \alpha A} B e^{-i \alpha A}=B
$$

for an arbitrary real parameter α. But from part a) we have already show that

$$
e^{i \alpha A} B e^{-i \alpha A}=\sum_{n=0}^{\infty} i^{n} C_{n} \frac{\alpha^{n}}{n!}
$$

where $C_{0}=B, C_{1}=[A, B]$ and $C_{n}=\left[A, C_{n-1}\right]$. For the case at hand of $[A, B]=B$ we have $C_{n}=B$ for all $n=0,1, \ldots$

$$
e^{i \alpha A} B e^{-i \alpha A}=B \sum_{n=0}^{\infty} i^{n} \frac{\alpha^{n}}{n!}=B e^{i \alpha}
$$

This is the claimed result.

Question 5

We will first derive a useful identity for Pauli matrices. Consider the multiplication of two matrices

$$
\begin{aligned}
(\vec{A} \cdot \vec{\sigma})(\vec{B} \cdot \vec{\sigma}) & =\left(\sigma_{i} \sigma_{j}\right) A_{i} B_{j} \\
& =\frac{1}{2}\left[\left(\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}\right)+\left(\sigma_{i} \sigma_{j}-\sigma_{j} \sigma_{i}\right)\right] A_{i} B_{j} \\
& =\frac{1}{2}\left(\left\{\sigma_{i}, \sigma_{j}\right\}+\left[\sigma_{i}, \sigma_{j}\right]\right) A_{i} B_{j} \\
& =\frac{1}{2}\left(2 \delta_{i j}+2 i \epsilon_{i j k} \sigma_{k}\right) A_{i} B_{j}
\end{aligned}
$$

where we have used the basic commutation relations satisfied by the Pauli matrices:

$$
\left[\sigma_{i}, \sigma_{j}\right]=2 i \epsilon_{i j k} \sigma_{k} \text { and }\left\{\sigma_{i}, \sigma_{j}\right\}=2 \delta_{i j}
$$

Thus we have the identity

$$
(\vec{A} \cdot \vec{\sigma})(\vec{B} \cdot \vec{\sigma})=\vec{A} \cdot \vec{B}+i \vec{\sigma} \cdot(\vec{A} \times \vec{B})
$$

Set $\vec{A}=\vec{B}=\vec{r}$, we get $(\vec{r} \cdot \vec{\sigma})^{2}=r^{2}+i \vec{\sigma} \cdot(\vec{r} \times \vec{r})=r^{2}$ and $\left.\left.(\vec{r} \cdot \vec{\sigma})^{3}=r^{2}\right) \vec{r} \cdot \vec{\sigma}\right)=r^{3}(\hat{r} \cdot \vec{\sigma})$. It is then straightforward to see that

$$
(\vec{r} \cdot \vec{\sigma})^{2 n}=r^{2 n} \text { and }(\vec{r} \cdot \vec{\sigma})^{2 n+1}=r^{2 n+1}(\hat{r} \cdot \vec{\sigma})
$$

with $n=1,2, \ldots$. The desired identity for the unitary matrix then follows as

$$
\begin{aligned}
\exp (i \vec{r} \cdot \vec{\sigma}) & =\sum_{n} \frac{i^{n}}{n!}(\vec{r} \cdot \vec{\sigma})^{n} \\
& =\sum_{n=\text { even }} \frac{i^{n}}{n!} r^{n}+(\hat{r} \cdot \vec{\sigma}) \sum_{n=o d d} \frac{i^{n}}{n!} r^{n} \\
& =\cos r+(\hat{r} \cdot \vec{\sigma}) \sin r
\end{aligned}
$$

Remark: This relation holds only for 2×2 unitary matrices and does not hold for higher-dimensional cases, where anticommutation relations are much more complicated than just the Kronecker delta.

Question 6

From the Schrödinger equation we can multiply by ψ^{*}, that is,

$$
i \hbar \psi^{*} \frac{\partial \psi}{\partial t}=-\frac{\hbar^{2}}{2 m} \psi^{*} \nabla^{2} \psi+\psi^{*} V \psi
$$

Similarly, if we conjugate the Schrödinger equation and multiply by ψ

$$
-i \hbar \frac{\partial \psi^{*}}{\partial t} \psi=-\frac{\hbar^{2}}{2 m}\left(\nabla^{2} \psi^{*}\right) \psi+V \psi^{*} \psi
$$

The difference of these two equations yields

$$
\begin{gathered}
i \hbar\left(\psi^{*} \frac{\partial \psi}{\partial t}+\frac{\partial \psi^{*}}{\partial t} \psi\right)=-\frac{\hbar^{2}}{2 m}\left(\psi^{*} \nabla^{2} \psi-\left(\nabla^{2} \psi^{*}\right) \psi\right) \\
\text { or } i \hbar \frac{\partial}{\partial t}\left(\psi^{*} \psi\right)=-\frac{\hbar^{2}}{2 m} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\left(\vec{\nabla} \psi^{*}\right) \psi\right) \\
\frac{\partial}{\partial t}\left(\psi^{*} \psi\right)+\frac{\hbar}{2 i m} \vec{\nabla} \cdot\left(\psi^{*} \vec{\nabla} \psi-\left(\vec{\nabla} \psi^{*}\right) \psi\right)=0
\end{gathered}
$$

Defining $j^{\mu} \equiv(c \rho, \vec{j})$, then $\partial_{\mu} j^{\mu}=0$ means

$$
\begin{aligned}
c \rho & =c \psi^{*} \psi \\
\vec{j} & =\frac{\hbar}{2 i m}\left(\psi^{*} \vec{\nabla} \psi-\left(\vec{\nabla} \psi^{*}\right) \psi\right) .
\end{aligned}
$$

