Tutorial Sheet 3

Question 1

Show the following relationships between the unitary and hermitian matrices:

a) Any $n \times n$ unitary matrix $U^{\dagger}U = 1$ can be written as

 $U = \exp(iH)$

where *H* is hermitian, $H^{\dagger} = H$.

b) $\det U = 1$ implies that H is traceless.

Remark: This result means that $n \times n$ unitary matrices with unit determinant can be generated by $n \times n$ traceless hermitian matrices.

Question 2

The $n \times n$ unitary matrices with unit determinant form the SU(n) group.

- a) Show that it has $n^2 1$ independent group parameters.
- b) Show that the maximum number of mutually commuting matrices in an SU(n) group is (n-1). (This is the **rank** of the group.)

Question 3

This problem illustrates the special property of the SU(2) representations, their being equivalent to their complex conjugate representations.

a) For every 2×2 unitary matrix U with unit determinant, show there exists a matrix S which connects U to its complex conjugate matrix U^* through the similarity transformation

$$S^{-1}US = U^* \; .$$

b) Suppose ψ_1 and ψ_2 are the bases for the spin- $\frac{1}{2}$ representation of SU(2) having eigenvalues of $\pm \frac{1}{2}$ for the diagonal generator T_3 ;

$$T_3\psi_1 = \frac{1}{2}\psi_1$$
 and $T_3\psi_2 = -\frac{1}{2}\psi_2$,

calculate the eigenvalues of T_3 operating on ψ_1^* and ψ_2^* , respectively.

Question 4

a) Show that if A and B are two $n \times n$ matrices, we have the Baker-Hausdorff relation

$$e^{iA}Be^{-iA} = B + i[A, B] + \frac{i}{2!}[A, [A, B]] + \ldots + \frac{i^n}{n!}[A, [A, \ldots [A, B] \ldots]] + \ldots$$

b) Show that the matrix B is invariant (up to a phase) under the transformations generated by the matrix A, if these two matrices satisfy the commutation relation of [A, B] = B.

Question 5

Prove the identity for 2×2 unitary matrices generated by Pauli matrices $\vec{\sigma} = (\sigma_1, \sigma_2, \sigma_3)$:

 $\exp(i\vec{r}\cdot\vec{\sigma}) = \cos r + (\hat{r}\cdot\vec{\sigma})\sin r$

where $r = |\vec{r}|$ is the magnitude of the vector \vec{r} and $\hat{r} = \vec{r}/r$ is the unit vector.

Question 6

Consider the non-relativistic Schrödinger equation

$$i\hbar\frac{\partial}{\partial t}\psi(\vec{r},t) = \left[-\frac{\hbar^2}{2m}\nabla^2 + V(\vec{r})\right]\psi(\vec{r},t)$$

Obtain the conserved probability 4-current

$$j^{\mu} \equiv (c\rho, \vec{j})$$

$$\rho = \psi^* \psi \qquad ; \qquad \vec{j} = \frac{\hbar}{2im} \left(\psi^* \vec{\nabla} \psi - \psi \vec{\nabla} \psi^* \right)$$

Answers

Question 1

a) The matrix U can always be diagonalised by some unitary matrix V

$$VUV^{\dagger} = U_d$$

where U_d is a diagonal matrix satisfying the unitarity condition $U_d U_d^{\dagger} = 1$. This implies that each of the diagonal elements can be expressed as a complex number with unit magnitude $e^{i\alpha}$.

$$U_d = \begin{pmatrix} e^{i\alpha_1} & & \\ & e^{i\alpha_2} & \\ & & \ddots & \\ & & & e^{i\alpha_n} \end{pmatrix}$$

where α_i 's are real. It is then straightforward to see the equality $U_d = e^{iH_d}$, where H_d is a real diagonal matrix: $H_d = \text{diag}(\alpha_1, \alpha_2, \dots, \alpha_n)$. We then have

$$U = V^{\dagger} U_d V = V^{\dagger} e^{iH_d} V = e^{iH_d}$$

with $H = V^{\dagger} H_d V$. Because H_d is real and diagonal, the matrix H is hermitian:

$$H^{\dagger} = \left(V^{\dagger}H_dV\right)^{\dagger} = V^{\dagger}H_d^{\dagger}V = H \; .$$

b) From the matrix identity $e^{\text{Tr}A} = \det(e^A)$, we have for $U = e^{iH}$

$$e^{i\operatorname{Tr} H} = \det(e^{iH}) = \det U$$

Thus $\det U = 1$ implies that $\operatorname{Tr} H = 0$.

Question 2

- a) To count the number of independent group parameters, it is easier to do so through the generator matrix. From the previous problem, we have $U = e^{iH}$, where H is an $n \times n$ traceless hermitian matrix. For a general hermitian matrix, the diagonal elements must be real, $H_{ii} = H_{ii}^*$. Because of the traceless condition, this corresponds to (n-1) independent parameters. There are altogether $(n^2 - n)$ off-diagonal elements and thus $(n^2 - n)$ independent parameters because each complex element corresponds to two real parameters, yet this factor of two is cancelled by the hermitian conditions $H_{ij} = H_{ji}^*$. Consequently, we have a total of $(n-1+n^2-n) = (n^2-1)$ independent parameters.
- b) From the discussion in part a) we already know that there are n-1 independent diagonal SU(n) matrices, which obviously must be mutually commutative. On the other hand, if there were more than n-1 mutually commuting matrices, they could all be diagonalised simultaneously, thus yielding more than n-1 independent diagonal matrices. This is impossible for $n \times n$ traceless hermitian generating matrices.

Question 3

a) We will prove this by explicit construction. Question 1 taught us that the unitary matrix U can be expressed in terms of its generating matrix $U = \exp iH$. Thus the matrix S, if it exists, must have the property of

$$S^{-1}HS = -H^*$$

so that $S^{-1}US = S^{-1}(\exp iH)S = U^* = \exp(-iH^*)$. The generating matrix H, being a 2 × 2 traceless hermitian matrix, can be expanded in terms of the Pauli matrices

$$H = a_1\sigma_1 + a_2\sigma_2 + a_3\sigma_3$$

with real coefficients of expansion a_i . Since σ_1 and σ_3 are real, σ_2 imaginary, we have

$$H^* = a_1\sigma_1 - a_2\sigma_2 + a_3\sigma_3$$

The top equation cabe translated into relations between S and Pauli matrices: $S^{-1}\sigma_1 S = -\sigma_1$, $S^{-1}\sigma_2 S = \sigma_2$ and $S^{-1}\sigma_3 S = -\sigma_3$. Namely, the matrix S must commute with σ_2 and anticommute with σ_1 and σ_3 . This can be satisfied with

$$S = c\sigma_2$$

where c is some arbitrary constant. If we choose c = 1, the matrix S is unitary and hermitian; for c = i, S is real.

b) The statement ' ψ_1 and ψ_2 are the bases for the spin- $\frac{1}{2}$ representation of SU(2)' means that under an SU(2) transformation (i = 1, 2)

$$\psi_i \to \psi'_i = U_{ij}\psi_j$$
 with $U = \exp(i\vec{\alpha}\cdot\vec{\sigma})$.

In matrix notation, this is $\psi' = U\psi$. The complex conjugate equation is then

$$\psi'^* = U^* \psi^* = (S^{-1}US)\psi^*$$
 or $(S\psi'^*) = U(S\psi^*)$.

This means that $S\psi^*$ has the same transformation properties as ψ . Explicitly, with $S = i\sigma_2$, we have

$$S\psi^* = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} \psi_1^* \\ \psi_2^* \end{pmatrix} = \begin{pmatrix} \psi_2^* \\ -\psi_1^* \end{pmatrix} .$$

To say that it has the same transformation properties as

$$\left(\begin{array}{c}\psi_1\\\psi_2\end{array}\right)$$

means that, for example,

$$T_3\begin{pmatrix} \psi_2^*\\ -\psi_1^* \end{pmatrix} = \begin{pmatrix} 1/2 & 0\\ 0 & -1/2 \end{pmatrix} \begin{pmatrix} \psi_2^*\\ -\psi_1^* \end{pmatrix} .$$

Namely, the eigenvalues of the T_3 generators are

$$t_3(\psi_2^*) = t_3(\psi_1) = \frac{1}{2}$$
$$t_3(\psi_1^*) = t_3(\psi_2) = -\frac{1}{2}$$

Remark: This shows that the $T = \frac{1}{2}$ representation is equivalent to its complex conjugate representation. We say that it is a **real representation**. This property can be extended to all other representations of the SU(2) group, because all other representations can be obtained from the $T = \frac{1}{2}$ representation by tensor product. Part b) shows that the matrix S transforms any real diagonal matrix, e.g. σ_3 , into the **negative** of itself. In other words, S will transform any eigenvalue to its negative. Thus the existence of such a matrix S requires that the eigenvalues of the hermitian-generating matrix occur in pairs of the form $\pm \alpha_1, \pm \alpha_2, \ldots$ (or are zero). It is then clear that for groups SU(n) with $n \geq 3$, such a matrix S cannot exist as eigenvalues of higher-rank special unitary groups do not have such a special pairwise structure.

Question 4

a) The matrix J, defined as $J(\lambda) \equiv e^{i\lambda A}Be^{-i\lambda A}$, begin a function of some real parameter λ , can be differentiated to yield:

$$\frac{dJ}{d\lambda} = e^{i\lambda A}i[A, B]e^{-i\lambda A} \Rightarrow \left. \frac{dJ}{d\lambda} \right|_{\lambda=0} = i[A, B] \equiv iC_1$$

$$\frac{d^2J}{d\lambda^2} = e^{i\lambda A}i^2[A, [A, B]]e^{-i\lambda A} \Rightarrow \left. \frac{d^2J}{d\lambda^2} \right|_{\lambda=0} = i^2[A, [A, B]] \equiv i^2C_2$$

$$\vdots \qquad \vdots$$

$$\frac{d^nJ}{d\lambda^n} = e^{i\lambda A}i^n[A, C_{n-1}]e^{-i\lambda A} \Rightarrow \left. \frac{d^nJ}{d\lambda^n} \right|_{\lambda=0} = i^n[A, C_{n-1}] \equiv i^nC_1$$

Expand $J(\lambda)$ in a Taylor series:

$$J(\lambda) = \sum_{n=0}^{\infty} \left. \frac{d^n J}{d\lambda^n} \right|_{\lambda=0} \frac{\lambda^n}{n!} = \sum_{n=0}^{\infty} i^n C_n \frac{\lambda^n}{n!}$$

where $C_0 = B$, $C_1 = [A, B]$ and $C_n = [A, C_{n-1}]$. Setting $\lambda = 1$, we have the desired result

$$e^{iA}Be^{-iA} = B + i[A, B] + \frac{i^2}{2!}[A, [A, B]] + \dots$$

b) To show that 'the matrix B is invariant (up to a phase) under transformations generated by matrix A' means to show that

$$e^{i\alpha A}Be^{-i\alpha A} = B$$

for an arbitrary real parameter α . But from part a) we have already show that

$$e^{i\alpha A}Be^{-i\alpha A} = \sum_{n=0}^{\infty} i^n C_n \frac{\alpha^n}{n!}$$

where $C_0 = B$, $C_1 = [A, B]$ and $C_n = [A, C_{n-1}]$. For the case at hand of [A, B] = B we have $C_n = B$ for all n = 0, 1, ...

$$e^{i\alpha A}Be^{-i\alpha A} = B\sum_{n=0}^{\infty} i^n \frac{\alpha^n}{n!} = Be^{i\alpha}$$

This is the claimed result.

Question 5

We will first derive a useful identity for Pauli matrices. Consider the multiplication of two matrices

$$\begin{aligned} (\vec{A} \cdot \vec{\sigma})(\vec{B} \cdot \vec{\sigma}) &= (\sigma_i \sigma_j) A_i B_j \\ &= \frac{1}{2} [(\sigma_i \sigma_j + \sigma_j \sigma_i) + (\sigma_i \sigma_j - \sigma_j \sigma_i)] A_i B_j \\ &= \frac{1}{2} (\{\sigma_i, \sigma_j\} + [\sigma_i, \sigma_j]) A_i B_j \\ &= \frac{1}{2} (2\delta_{ij} + 2i\epsilon_{ijk}\sigma_k) A_i B_j \end{aligned}$$

where we have used the basic commutation relations satisfied by the Pauli matrices:

$$[\sigma_i, \sigma_j] = 2i\epsilon_{ijk}\sigma_k$$
 and $\{\sigma_i, \sigma_j\} = 2\delta_{ij}$.

Thus we have the identity

$$(\vec{A}\cdot\vec{\sigma})(\vec{B}\cdot\vec{\sigma})=\vec{A}\cdot\vec{B}+i\vec{\sigma}\cdot(\vec{A}\times\vec{B})$$

Set $\vec{A} = \vec{B} = \vec{r}$, we get $(\vec{r} \cdot \vec{\sigma})^2 = r^2 + i\vec{\sigma} \cdot (\vec{r} \times \vec{r}) = r^2$ and $(\vec{r} \cdot \vec{\sigma})^3 = r^2)\vec{r} \cdot \vec{\sigma} = r^3(\hat{r} \cdot \vec{\sigma})$. It is then straightforward to see that

$$(\vec{r} \cdot \vec{\sigma})^{2n} = r^{2n}$$
 and $(\vec{r} \cdot \vec{\sigma})^{2n+1} = r^{2n+1}(\hat{r} \cdot \vec{\sigma})$

with $n = 1, 2, \ldots$ The desired identity for the unitary matrix then follows as

$$\exp(i\vec{r}\cdot\vec{\sigma}) = \sum_{n} \frac{i^{n}}{n!} (\vec{r}\cdot\vec{\sigma})^{n}$$
$$= \sum_{n=even} \frac{i^{n}}{n!} r^{n} + (\hat{r}\cdot\vec{\sigma}) \sum_{n=odd} \frac{i^{n}}{n!} r^{n}$$
$$= \cos r + (\hat{r}\cdot\vec{\sigma}) \sin r .$$

Remark: This relation holds only for 2×2 unitary matrices and does not hold for higher-dimensional cases, where anticommutation relations are much more complicated than just the Kronecker delta.

Question 6

From the Schrödinger equation we can multiply by $\psi^*,$ that is,

$$i\hbar\psi^*\frac{\partial\psi}{\partial t} = -\frac{\hbar^2}{2m}\psi^*\nabla^2\psi + \psi^*V\psi$$

Similarly, if we conjugate the Schrödinger equation and multiply by ψ

$$-i\hbar\frac{\partial\psi^*}{\partial t}\psi = -\frac{\hbar^2}{2m}(\nabla^2\psi^*)\psi + V\psi^*\psi$$

The difference of these two equations yields

$$i\hbar\left(\psi^*\frac{\partial\psi}{\partial t} + \frac{\partial\psi^*}{\partial t}\psi\right) = -\frac{\hbar^2}{2m}\left(\psi^*\nabla^2\psi - (\nabla^2\psi^*)\psi\right)$$

or $i\hbar\frac{\partial}{\partial t}(\psi^*\psi) = -\frac{\hbar^2}{2m}\vec{\nabla}\cdot\left(\psi^*\vec{\nabla}\psi - (\vec{\nabla}\psi^*)\psi\right)$
 $\frac{\partial}{\partial t}(\psi^*\psi) + \frac{\hbar}{2im}\vec{\nabla}\cdot\left(\psi^*\vec{\nabla}\psi - (\vec{\nabla}\psi^*)\psi\right) = 0$

Defining $j^{\mu} \equiv (c\rho, \vec{j})$, then $\partial_{\mu} j^{\mu} = 0$ means

$$c
ho = c\psi^*\psi$$

 $\vec{j} = rac{\hbar}{2im} \left(\psi^* \vec{\nabla} \psi - (\vec{\nabla} \psi^*)\psi
ight)$