Physics Honours: Standard Model
Tutorial Sheet 3

Question 1

Show the following relationships between the unitary and hermitian matrices:
a) Any n x n unitary matrix UTU = 1 can be written as
U =exp(iH)
where H is hermitian, H' = H.

b) detU =1 implies that H is traceless.

Remark: This result means that n x n unitary matrices with unit determinant can be generated by n x n traceless
hermitian matrices.

Question 2

The n X n unitary matrices with unit determinant form the SU(n) group.
a) Show that it has n? — 1 independent group parameters.

b) Show that the maximum number of mutually commuting matrices in an SU(n) group is (n — 1). (This is
the rank of the group.)

Question 3

This problem illustrates the special property of the SU(2) representations, their being equivalent to their complex
conjugate representations.

a) For every 2 X 2 unitary matrix U with unit determinant, show there exists a matrix S which connects U to
its complex conjugate matrix U* through the similarity transformation

STlus=u*.

b) Suppose ¢, and 1) are the bases for the spin—% representation of SU(2) having eigenvalues of :I:% for the
diagonal generator T3;

1 1
T3¢ = 51/11 and Tsto = —§¢2 ,

calculate the eigenvalues of T3 operating on 7 and 13, respectively.



Question 4

a) Show that if A and B are two n x n matrices, we have the Baker-Hausdorff relation

'

e4Be™' = B+i[A, Bl + A [A Bl + ...+
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b) Show that the matrix B is invariant (up to a phase) under the transformations generated by the matrix A,
if these two matrices satisfy the commutation relation of [A, B] = B.

Question 5
Prove the identity for 2 x 2 unitary matrices generated by Pauli matrices & = (01, 02,03):
exp(ir'- &) = cosr + (7 - &) sinr

where 7 = |7] is the magnitude of the vector # and 7 = 7/r is the unit vector.

Question 6

Consider the non-relativistic Schrédinger equation

mﬁ@b(f t) —h—2V2+V(F) (7,1
ot Y’ 2m ’

Obtain the conserved probability 4-current

it = (ep,j)
* . z h * v =7, 1%
p=vv =g (W —uVy)



Answers

Question 1

a)

The matrix U can always be diagonalised by some unitary matrix V'
vuvt =0y,

where Uy is a diagonal matrix satisfying the unitarity condition UyU " — 1. This implies that each of the
diagonal elements can be expressed as a complex number with unit magnitude e**.

ei(ll
U; =
eian

where «;’s are real. It is then straightforward to see the equality Uy = e*¢

matrix: Hy = diag(aq, o, ..., q,). We then have

, where Hy is a real diagonal

U=VIU,v =vieHy =t
with H = VTH;V. Because Hy is real and diagonal, the matrix H is hermitian:
HY = (ViHY) = ViHV = H.
From the matrix identity e = det(e”), we have for U = e
T — det(e'?) = detU .

Thus detU = 1 implies that TrH = 0.

Question 2

a)

To count the number of independent group parameters, it is easier to do so through the generator matrix.
From the previous problem, we have U = e, where H is an n x n traceless hermitian matrix. For a general
hermitian matrix, the diagonal elements must be real, H;;, = H};. Because of the traceless condition, this
corresponds to (n — 1) independent parameters. There are altogether (n? — n) off-diagonal elements and
thus (n? — n) independent parameters because each complex element corresponds to two real parameters,
yet this factor of two is cancelled by the hermitian conditions H;; = H;. Consequently, we have a total of
(n —1+n%—n) = (n? — 1) independent parameters.

From the discussion in part a) we already know that there are n — 1 independent diagonal SU(n) matri-
ces, which obviously must be mutually commutative. On the other hand, if there were more than n — 1
mutually commuting matrices, they could all be diagonalised simultaneously, thus yielding more than n — 1
independent diagonal matrices. This is impossible for n x n traceless hermitian generating matrices.

Question 3

a)

We will prove this by explicit construction. Question 1 taught us that the unitary matrix U can be expressed
in terms of its generating matrix U = expiH. Thus the matrix S, if it exists, must have the property of

ST'HS = —-H*

so that STIUS = S~ !(expiH)S = U* = exp(—iH*). The generating matrix H, being a 2 x 2 traceless
hermitian matrix, can be expanded in terms of the Pauli matrices

H = ai01 + as09 + asos
with real coefficients of expansion a;. Since oy and o3 are real, oo imaginary, we have

H* = ay01 — as09 + a3os .



The top equation ca be translated into relations between S and Pauli matrices: S~101.8 = —01, S 1025 = 09
and S~1o3S = —0o3. Namely, the matrix S must commute with o5 and anticommute with o; and ¢5. This
can be satisfied with

S = CO9

where c¢ is some arbitrary constant. If we choose ¢ = 1, the matrix S is unitary and hermitian; for ¢ =4, S
is real.

b) The statement ‘41 and ¢, are the bases for the spin-1 representation of SU(2)’ means that under an SU(2)
transformation (i = 1, 2)

In matrix notation, this is ¢’ = U1). The complex conjugate equation is then
W =UY = (STIUSY or (S9™) =U(SY*).

This means that S¢¥* has the same transformation properties as ¥. Explicitly, with S = iy, we have

O U W A W G
o= (o) ()= (%)

To say that it has the same transformation properties as
(%)
P2
n(25:)= (0 ) (2)
=1 0 —1/2 )\ =1

Namely, the eigenvalues of the T3 generators are

means that, for example,

ta(03) = taln) =

0) = ta(t) =

Remark: This shows that the T = % representation is equivalent to its complex conjugate representation. We
say that it is a real representation. This property can be extended to all other representations of the SU(2)
group, because all other representations can be obtained from the T = % representation by tensor product. Part
b) shows that the matrix S transforms any real diagonal matrix, e.g. o3, into the negative of itself. In other
words, S will transform any eigenvalue to its negative. Thus the existence of such a matrix S requires that the
eigenvalues of the hermitian-generating matrix occur in pairs of the form +ay, £as,... (or are zero). It is then
clear that for groups SU(n) with n > 3, such a matrix S cannot exist as eigenvalues of higher-rank special unitary
groups do not have such a special pairwise structure.

Question 4

a) The matrix J, defined as J()\) = e* Be™**4 begin a function of some real parameter A, can be differentiated

to yield:
% = e?j[A, Ble™?4 = % = i[A, B] = iC,
A=0

d*J IAA -2 —iAA d*J - ;
—= = M2[A A, Bllem M = = =i?[A,[A, B]] = i2C»
X2 a2z, _,

arJ iINA - —_iMA d"J . .
-, =¢ i"[A,Cp_q]e” = - =1i"[A,Cpq] =i"Cy
X DN




Expand J()) in a Taylor series:

= darJ
J(A):Z_% |, Z@nc A

where Cy = B, C1 = [A, B] and C,, = [A,C,,_1]. Setting A = 1, we have the desired result

eABe™ = B+ i[A, B] + 22 (A, [A, B]] +

b) To show that ‘the matrix B is invariant (up to a phase) under transformations generated by matrix A’
means to show that
eiaABefiaA — B

for an arbitrary real parameter . But from part a) we have already show that
i —iaA -n
e Be = g i"C, o

where Cy = B, C; = [A, B] and C,, = [A4,C,_1]. For the case at hand of [A, B] = B we have C,, = B for all
n=20,1,...

oo an
A —iaA -n _
e'**Be =B E ) i Be
This is the claimed result.

Question 5

We will first derive a useful identity for Pauli matrices. Consider the multiplication of two matrices

(A-3)(B-3) =

—

O’Z‘O'j)AiBj
[(oi0j + 0j0:) + (0i0j — 00:)]|Ai B;

({oi,05} + [0, 04])Ai B,

— N = N

= (25U + 2ie;,01) Ai B,

where we have used the basic commutation relations satisfied by the Pauli matrices:
[0i,0;] = 2ie;jpor and {0, 0;} = 20;5 .

Thus we have the identity . . L o
(A-0)(B-d)=A-B+id-(AxB

~—

Set A= B =7, we get (7-3)2 = r2+iG - (F x 7) = r% and (7-&)3 = r2)7- &) = r3(# - 7). It is then straightforward
to see that

(7-&)* =™ and (7 &) = 2" )

with n =1,2,.... The desired identity for the unitary matrix then follows as

. "
exp(ir- &) = Z E(r -a)"
n

3" . (AL

= D ) Y o

n=even n=odd

= cosr + (7-&)sinr .

Remark: This relation holds only for 2 x 2 unitary matrices and does not hold for higher-dimensional cases,
where anticommutation relations are much more complicated than just the Kronecker delta.



Question 6
From the Schrodinger equation we can multiply by ¥*, that is,

oy R

YV + VY
Similarly, if we conjugate the Schrodinger equation and multiply by

o+ h?

—ihar v =

(V2" ) + Vp*y

" 2m

The difference of these two equations yields

Lo ot N R, 2
m@aﬁ v w)——m(wvw—ww)w)

9 KZ - - -
or il= (Y P) ==~V (w*w - (vw*)w)
3 * h — * v = % —
S W) + 5V - (WY = (Vo)) =0

-,

Defining j* = (cp, 5), then 9,5 = 0 means



