Physics Honours: Standard Model

Tutorial Sheet 1

Question 1

If an electron has orbital angular momentum equal to $4.714 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}$, what is the orbital quantum number for the state of the electron.

Question 2

a) Find the mass density of a proton, modeling it as a solid sphere of radius $1.00 \times 10^{-15} \mathrm{~m}$.
b) What If? Consider a classical model of an electron as a solid sphere with the same density as the proton. Find its radius.
c) Imagine that this electron possess spin angular momentum $I \omega=\hbar / 2$ because of classical rotation about the z-axis. Determine the speed of a point on the equator of the electron and
d) compare this speed to the speed of light.

Question 3

Particles known as resonances have very short life-times, on the order of $10^{-23} \mathrm{~s}$. From this information would you guess that they are hadrons or leptons? Explain

Question 4

The Ξ^{0} particle decays by the weak interaction according to the decay mode $\Xi^{0} \rightarrow \Lambda^{0}+\pi^{0}$. Would you expect this decay to be fast or slow? Explain.

Question 5

Two protons in a nucleus interact via the nuclear interaction. Are they also subject to the weak interaction?

Question 6

Recall that under Lorentz transformations

$$
x^{\mu} \rightarrow x^{\prime \mu}=\Lambda_{\nu}^{\mu} x^{\nu}
$$

a) Obtain the explicit form of the matrix Λ_{ν}^{μ} for a "boost" along the x-axis.
b) Obtain the explicit form of the matrix $\Lambda^{\mu}{ }_{\nu}$ for a "rotation" through an angle θ about the z-axis.

Question 7

Consider an arbitrary rotation in three spatial dimensions

$$
X_{i} \rightarrow X_{i}^{\prime}=O_{i j} X_{j} \quad i, j=1,2,3
$$

or equivalently, using a matrix notation

$$
X \rightarrow X^{\prime}=O X
$$

a) Explain why $X_{i} X_{i}=X^{T} X=$ invariant
b) and hence that the matrix O must satisfy

$$
O^{T} O=1 \Leftrightarrow O^{-1}=O^{T}
$$

c) What matrices are these?

Question 8

Consider now a Lorentz transformation

$$
x^{\mu} \rightarrow x^{\mu}=\Lambda_{\nu}^{\mu} x^{\nu}
$$

Associate a column vector X to x^{μ}, so that in matrix form (where Λ is a matrix)

$$
X \rightarrow X^{\prime}=\Lambda X
$$

a) Explain why for a Lorentz transformation

$$
X^{T} g X=\text { invariant }
$$

where $g_{\mu \nu} \rightarrow g$ is the metric.
b) Hence show that for a Lorentz transformation

$$
\Lambda^{T} g \Lambda=g
$$

c) Show that in vector/tensor/index notation this requires

$$
\Lambda_{\alpha}^{\mu} g_{\mu \nu} \Lambda_{\beta}^{\nu}=g_{\alpha \beta}
$$

Answers

Question 1

$$
\begin{gathered}
L=\sqrt{\ell(\ell+1)} \Rightarrow 4.714 \times 10^{-34}=\sqrt{\ell(\ell+1)}\left(\frac{6.626 \times 10^{-34}}{2 \pi}\right) \\
\text { or } \ell(\ell+1)=\frac{\left(4.714 \times 10^{-34}\right)^{2}(2 \pi)^{2}}{\left(6.626 \times 10^{-34}\right)^{2}}=19.98 \approx 20 \\
\Rightarrow \ell=4
\end{gathered}
$$

Question 2

a) Density of a proton:

$$
\rho=\frac{m}{V}=\frac{1.67 \times 10^{-27} \mathrm{~kg}}{\left(\frac{4}{3}\right) \pi\left(1.00 \times 10^{-15} \mathrm{~m}\right)^{3}}=3.99 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}
$$

b) Size of model electron:

$$
r=\left(\frac{3 m}{4 \pi \rho}\right)^{1 / 3}=\left(\frac{3\left(9.11 \times 10^{-31} \mathrm{~kg}\right)}{4 \pi\left(3.99 \times 10^{17} \mathrm{~kg} / \mathrm{m}^{3}\right)}\right)^{1 / 3}=8.17 \times 10^{-17} \mathrm{~m}
$$

c) Moment of Inertia:

$$
\begin{aligned}
I & =\frac{2}{5} m r^{2}=\frac{2}{5}\left(9.11 \times 10^{-31} \mathrm{~kg}\right)\left(8.17 \times 10^{-17} \mathrm{~m}\right)^{2} \\
& =2.43 \times 10^{-63} \mathrm{~kg} \cdot \mathrm{~m}^{2} \\
L_{z} & =I \omega=\frac{\hbar}{2}=\frac{I v}{r} \\
\text { Therefore } v & =\frac{\hbar r}{2 I}=\frac{\left(6.626 \times 10^{-34} \mathrm{~J} \cdot \mathrm{~s}\right)\left(8.17 \times 10^{-17} \mathrm{~m}\right)}{2 \pi\left(2 \times 2.43 \times 10^{-63} \mathrm{~kg} \cdot \mathrm{~m}^{2}\right)} \\
& =1.77 \times 10^{12} \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

d) This is 5.91×10^{3} times larger than the speed of light.

Question 3

Resonances are hadrons. They decay into strongly interacting particles such as protons, neutrons and pions, all of which are hadrons.

Question 4

Decays by the weak interaction typically take $10^{-10} s$ or longer to occur. This is slow in particle physics.

Question 5

Yes, protons interact via the weak interaction; but the strong interaction predominates.

Question 6

a) As learnt in previous studies

$$
\begin{gathered}
x^{\prime}=\gamma(x-v t) \\
y^{\prime}=y \\
z^{\prime}=z \\
t^{\prime}=\gamma\left(t-\frac{v}{c^{2}} x\right)
\end{gathered} \Rightarrow\left\{\begin{array}{c}
c t^{\prime}=\left(c t-\frac{v}{c} x\right) \gamma \\
x^{\prime}=\left(x-\frac{v}{c}(c t)\right) \gamma \\
y^{\prime}=y \\
z^{\prime}=z
\end{array}\right.
$$

$$
\text { Therefore } \begin{aligned}
\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) & =\left(\begin{array}{cccc}
\gamma & -\frac{v \gamma}{c} & 0 & 0 \\
-\frac{v \gamma}{c} & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \\
x^{\prime \mu} & =\Lambda^{\mu}{ }_{\nu} x^{\nu}
\end{aligned}
$$

b) For rotations about the z-axis through an angle θ

$$
\begin{aligned}
\left(\begin{array}{l}
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) & =\left(\begin{array}{ccc}
\cos \theta & \sin \theta & 0 \\
-\sin \theta & \cos \theta & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right) \\
\text { adding } c t ;\left(\begin{array}{c}
c t^{\prime} \\
x^{\prime} \\
y^{\prime} \\
z^{\prime}
\end{array}\right) & =\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & \cos \theta & \sin \theta & 0 \\
0 & -\sin \theta & \cos \theta & 0 \\
0 & 0 & 0 & 1
\end{array}\right)\left(\begin{array}{c}
c t \\
x \\
y \\
z
\end{array}\right) \\
x^{\prime \mu} & =\Lambda^{\mu}{ }_{\nu} x^{\nu}
\end{aligned}
$$

Question 7

a) Rotations preserve length, (length) ${ }^{2}=\sum_{i} X_{i}^{2}=X_{i} X_{i}$

$$
X_{i} X_{i}=\left(\begin{array}{llll}
X_{1} & X_{2} & \ldots & X_{N}
\end{array}\right)\left(\begin{array}{c}
X_{1} \tag{1}\\
X_{2} \\
\vdots \\
X_{N}
\end{array}\right)=X^{T} X
$$

using vector notation.
b) Suppose $X \rightarrow X^{\prime}=O X\left(X_{i}^{\prime}=O_{i j} X_{j}\right)$. Then $X^{T} \rightarrow X^{T}=(O X)^{T}=X^{T} O^{T}\left(X_{i}^{\prime}=X_{j}\left(O^{T}\right)_{j i}\right)$.

Do not forget $(A B)^{T}=B^{T} A^{T}$ as $(A B)_{i j}=A_{i k} B_{k j}$ and $\left((A B)^{T}\right)_{i j}=(A B)_{j i}=A_{j k} B_{k i}=B_{k i} A_{j k}=$ $\left(B^{T}\right)_{i k}\left(A^{T}\right)_{k j}=\left(B^{T} A^{T}\right)_{i j}$.
Therefore $X_{i}^{\prime} X_{i}^{\prime}=X^{T} X^{\prime}=X^{T} O^{T} O X=X^{T} X \Rightarrow O^{T} O=1 \Rightarrow O^{T}=O^{-1}$.
c) Orthonormal matrices (which are a subgroup of real unitary matrices)

Question 8

a) We have $x^{\prime \mu}=\Lambda^{\mu}{ }_{\nu} x^{\nu}$ and we can replace $x^{\mu}=\left(\begin{array}{c}x^{0} \\ \vdots \\ x^{3}\end{array}\right)$ with X and $\Lambda^{\mu}{ }_{\nu}=\left(\begin{array}{c}\Lambda_{1}^{1} \\ \Lambda_{2}^{1} \\ \cdots \\ \vdots\end{array}\right)$ with Λ. In which case $X^{\prime}=\Lambda X$.
For a Lorentz transformation $x^{\mu} x_{\mu}=$ invariant $=x^{\mu} g_{\mu \nu} x^{\nu} \equiv X^{T} g X$ where in matrix notation $g_{\mu \nu} \rightarrow g$
b) In which case $x_{\mu}^{\prime} x_{\mu}^{\prime}=x^{\mu} x_{\mu} \Rightarrow X^{\prime T} g X^{\prime}=X^{T} g X$. If $X^{\prime}=\Lambda X$ then $\left(X^{\prime}\right)^{T}=(\Lambda X)^{T}=X^{T} \Lambda^{T}$. Therefore $X^{T T} g X^{\prime}=X^{T} \Lambda^{T} g \Lambda X=X^{T} g X \Rightarrow \Lambda^{T} g \Lambda=g$.
c) As $g \rightarrow g_{\mu \nu}$ and $\Lambda \rightarrow \Lambda^{\mu}{ }_{\nu}$ therefore Λ^{T} must have indices $\left(\Lambda^{T}\right)_{\mu}{ }^{\nu}$. In which case $g=g_{\mu \nu}=\Lambda^{T} g \Lambda=$ $\left(\Lambda^{T}\right)_{\mu}{ }^{\alpha} g_{\alpha \beta} \Lambda^{\beta}{ }_{\nu}=\Lambda^{\alpha}{ }_{\mu} g_{\alpha \beta} \Lambda^{\beta}{ }_{\nu}$ as by the definition of $\left(\Lambda^{T}\right)_{\mu}{ }^{\nu}=\Lambda^{\nu}{ }_{\mu}$. Swapping indices $g_{\alpha \beta}=\Lambda^{\mu}{ }_{\alpha} g_{\mu \nu} \Lambda^{\nu}{ }_{\beta}$.

