
Physics Honours: Standard Model

Tutorial Sheet 2

Question 1

Kaons all decay into final states that contain no protons or neutrons. What is the baryon number of kaons?

Question 2

An antibaryon interacts with a meson. Can a baryon be produced in such an interaction? Explain

Question 3

Each of the following reactions is forbidden. Determine a conservation law that is violated for each reaction

a) p+ p̄→ µ+ + e−

b) p+ π− → π+ + p

c) p+ p→ π+ + p

d) p+ p→ p+ p+ n

e) p+ γ → π0 + n

Question 4

The particle decay Σ+ → π++n is observed in a bubble chamber. The figure below represents the curved tracks of
the particles Σ+ and π+, and the invisible track of the neutron, in the presence of a uniform magnetic field of 1.15T
directed out of the page. The measured radii of curvature are 1.99m for the Σ+ particle and 0.580m for the π+ par-
ticle
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a) p + p̄ ! µ+ + e�
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d) p + p ! p + p + n

e) p + � ! ⇡0 + n

Question 4

The particle decay ⌃+ ! ⇡++n is observed in a bubble chamber. The figure below represents the curved tracks of
the particles ⌃+ and ⇡+, and the invisible track of the neutron, in the presence of a uniform magnetic field of 1.15T
directed out of the page. The measured radii of curvature are 1.99m for the ⌃+ particle and 0.580m for the ⇡+ par-
ticle

n 64.5o

⇡+

⌃+

a) Find the momenta of the ⌃+ and the ⇡+ particles, in units of MeV/c

b) The angle between the momenta of the ⌃+ and the ⇡+ particles at the
moment of decay is 64.5o. Find the momentum of the neutron

c) Calculate the total energy of the ⇡+ particle, and of the neutron, from
their known masses (m⇡ = 139.6MeV/c2, mn = 939.6MeV/c2) and the
relativistic energy-momentum relation. What is the total energy of the ⌃+

particle

d) Calculate the mass and speed of the ⌃+ particle.
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a) Find the momenta of the Σ+ and the π+ particles, in units of MeV/c

b) The angle between the momenta of the Σ+ and the π+ particles at the
moment of decay is 64.5o. Find the momentum of the neutron

c) Calculate the total energy of the π+ particle, and of the neutron, from
their known masses (mπ = 139.6MeV/c2, mn = 939.6MeV/c2) and the
relativistic energy-momentum relation. What is the total energy of the Σ+

particle

d) Calculate the mass and speed of the Σ+ particle.
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Question 5

Consider an infinitesimal boost along the x-axis (that is, v/c� 1). Then

aµν = δµν + εµν

Obtain the form of εµν and εµν .

Question 6

Consider a relativistic equation for a free relativistic particle based on the relationship

E =
√

(mc2)2 + p2c2

Êφ(~r, t) =
√

(mc2)2 + c2p̂2φ(~r, t) (1)

Show that the solutions of the equation which are eigenstates of energy and momentum are

φ~k(~r, t) =
1

(2π)3/2
e−i(ω~k

t−~k·~r) ; ω~k =

√
c2k2 +

(
mc2

k

)2

and hence that the most general solution to equation (1) is given by

φ(~r, t) =

∫
d3k

(2π)3/2
f~ke
−i(ω~k

t−~k·~r) with f~k =

∫
d3~r

(2π)3/2
ei(ω~k

t−~k·~r)φ(~r, t) .

Question 7

The Klein paradox. Recall that the Klein-Gordon equation of a particle moving in the presence of a potential
V = qφ in one dimension is given by(

ih̄
∂

∂t
− V

)2

φ =

[
−c2h̄2 ∂

2

∂x2
+m2c4

]
φ .

Consider a particle of energy E > mc2 incident on a potential barrier

V (x) =

{
V x > 0
0 x < 0

a) Writing φ(x, t) = e−iEt/h̄φE(x), show that

(E − V )2φE(x) =

[
−c2h̄2 d

2

dx2
+m2c4

]
φE(x) .

b) Show that the solution to this equation can be written as

φE(x) = Aeikx +Be−ikx x < 0 ; E2 = (ch̄k)2 +m2c4

φE(x) = Ceiγx x > 0 ; (E − V )2 = (ch̄γ)2 +m2c4

c) Requiring continuity of φE(x) and
dφE
dx

(x) at x = 0, show that

B

A
=
k − γ
k + γ

;
C

A
=

2k

k + γ

d) Consider first the case when
V < E < mc2 + V
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Show that in this case the solution for x > 0 is given by

φE(x) = De−αx ; α =
1

h̄c

√
(mc2)2 − (E − V )2

and that the charge density in this region is given by

ρ(x) =
E − V
mc2

|D|2e−2αx

(see note at the end of the question). Hence argue why the particle is localised insider the barrier within a
distance

∼ h̄c/2
√

(mc2)2 − (E − V )2 ,

and compare this result with the non-relativistic case.

e) In an attempt to localise further the particle, V is increased so that

V −mc2 < E < V .

Show that the solution of d) is still valid, but now ρ(x) < 0!

f) In an effort to localise even further the particle in the barrier, the potential is further increased so that

V > E +mc2 .

i) Show that γ is real again, that is, there is again a particle current in this region x > 0!

ii) Show that the group velocity of the current is

vg =
h̄c− γ
E − V

and hence that in order for there to be a wave packet moving to the right γ < 0.

iii) Show that when γ < 0, the reflection coefficient B/A is larger than one, that is, more wave is reflected
than is incident!

g) Any explanation for the somewhat unusual features of the answers to e) and f)?

Note: Because the particle is coupled to the electromagnetic field (only Coulomb potential in this case), we need
to use minimal coupling

ih̄
∂

∂t
→ ih̄

∂

∂t
− qφ = ih̄

∂

∂t
− V

⇒ ∂

∂t
→ ∂

∂t
+
i

h̄
V
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Answers

Question 1

The baryon number of a proton or neutron is one. Since baryon number is conserved, the baryon number of the
kaon must be zero.

Question 2

No. Antibaryons have baryon number −1, meson have baryon number 0, and baryons have baryon number +1.
The reaction cannot occur because it would not conserve baryon number, unless so much energy is available that
a baryon-antibaryon pair is produced.

Question 3

a) p+ p̄→ µ+ + e−: Le numbers are 0 + 0→ 0 + 1, whilst Lµ we have 0 + 0→ −1 + 0

b) p+ π− → π+ + p: for charge we have −1 + 1→ +1 + 1

c) p+ p→ p+ π+: baryon numbers are 1 + 1→ 1 + 0

d) p+ p→ p+ p+ n: baryon numbers are 1 + 1→ 1 + 1 + 1

e) p+ γ → π0 + n: for charge we have 0 + 1→ 0 + 0

Question 4

a)

pΣ+ = eBrΣ+ =
(1.602177× 10−19C)(1.15T )(1.99m)

5.344288× 10−22(kg ·m/s)/(MeV/c)

= 686MeV/c

pπ+ = eBrπ+ =
(1.602177× 10−19C)(1.15T )(0.580m)

5.344288× 10−22(kg ·m/s)/(MeV/c)

= 200MeV/c

b) Let ϕ be the angle made by the neutron’s path with the path of the Σ+ at the moment of decay. By
conservation of momentum

pn cosϕ+ (199.961581MeV/c) cos 64.5o = 686.075081MeV/c

pn cosϕ = 599.989401MeV/c

pn sinϕ = (199.961581MeV/c) sin 64.5o = 180.482380MeV/c

⇒ pn =
√

(599.989401MeV/c)2 + (180.482380MeV/c)2

= 627MeV/c

c)

Eπ+ =
√

(pπ+c)2 + (mπ+c2)2 =
√

(199.961581MeV )2 + (139.6MeV )2

= 244MeV

En =
√

(pnc)2 + (mnc2)2 =
√

(626.547022MeV )2 + (939.6MeV )2

= 1130MeV

EΣ+ = Eπ+ + En = 1370MeV
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d)

mΣ+c2 =
√
E2

Σ+ − (pΣ+c)2 =
√

(1373.210664MeV )2 − (686.075081MeV )2

= 1190MeV

⇒ mΣ+ = 1190MeV/c2

EΣ+ = γmΣ+c2 where γ =

√
1− v2

c2
=

1373.210664MeV

1189.541303MeV
= 1.1544. Solving for v, v = 0.500c.

Question 5

From Question 6 a) of tutorial sheet 1 we recall that

aµν =


γ −βγ 0 0
−βγ γ 0 0

0 0 1 0
0 0 0 1


where γ =

(
1− v2

c2

)−1/2

= (1− β2)−1/2 ≈ 1 + 1
2β

2 + . . . = 1 +O(β2). Therefore, to order β = v/c

aµν =


1 −β 0 0
−β 1 0 0
0 0 1 0
0 0 0 1

 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

+


0 −β 0 0
−β 0 0 0
0 0 0 0
0 0 0 0


aµν ≈ δµν + εµν

εµν ≡ gµαεαν =


1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




0 −β 0 0
−β 0 0 0
0 0 0 0
0 0 0 0

 =


0 −β 0 0
β 0 0 0
0 0 0 0
0 0 0 0


Note that this is antisymmetric.

Question 6

φ~k(~r, t) =
1

(2π)3/2
e−i(ω~k

t−~k·~r) is an eigenfunction of energy and momentum (plane wave) satisfying

Êφ~k(~r, t) = ih̄
∂

∂t
φ~k(~r, t) = h̄ω~kφ~k(~r, t)

~̂pφ~k(~r, t) =
h̄

i

∂

∂xi
φ~k(~r, t) = h̄~kφ~k(~r, t)

Therefore p̂2φ~k(~r, t) = (h̄2k2)φ~k(~r, t) and in general p̂2nφ~k(~r, t) = (h̄2k2)nφ~k(~r, t).

Therefore
√

(mc2)2 + c2p̂2φ~k(~r, t) can be defined by a Taylor expansion, and

ih̄
∂

∂t
φ~k(~r, t) = h̄ω~kφ~k(~r, t) =

√
(mc2)2 − c2h̄2∇2φ~k(~r, t) =

√
(mc2)2 + c2h̄2k2φ~k(~r, t)

Therefore, h̄ω~k =
√

(mc2)2 + c2h̄2k2 ⇒ ω~k =

√
c2k2 +

(
mc2

k

)2

.

So the most general solution is a linear combination

φ(~r, t) =

∫
d3kf~kφ~k(~r, t) =

∫
d3k

(2π)3/2
f~ke
−i(ω~k

t−~k·~r)
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Question 7

a) (
ih̄
∂

∂t
− V

)2

e−iEt/h̄φE(x) =

[
−c2h̄2 ∂

2

∂x2
+m2c4

]
e−iEt/h̄φE(x)

⇒ (E − V )2φE(x) =

[
−c2h̄2 d

2

dx2
+m2c4

]
φE(x)

b) For x < 0, V = 0⇒ φE = e±ikx with E2 = h̄2c2k2 +m2c4

For x > 0, φE = eiγx with (E − V )2 = h̄2c2γ2 +m2c4

with other solutions not being physical.

c) From continuity of φE we have A+B = C, and from continuity of dφE

dx we have k(A−B) = γC. Rearranging

A−B =
γ

k
C which when added with our first equation give 2A =

(
1 +

γ

k

)
C =

(
k + γ

k

)
C ⇒ C

A
=

2k

k + γ
.

If we were to subtract our first and a rearranged second equation ((A − B)k/γ = C) ⇒ A

(
1− k

γ

)
+

B

(
1 +

k

γ

)
which leads to

B

A
=
k − γ
k + γ

.

d) (E − V )2 −m2c4 = (ch̄γ)2, now since E − V < mc2 ⇒ γ is imaginary. So let us call γ = iα in which case

α =
1

ch̄

√
(mc2)2 − (E − V )2 and φE(x) = De−αx.

Note that ρ(x) =
ih̄

2mc2

[
φ†
(
∂

∂t
+
iV

h̄

)
φ− φ

(
∂

∂t
− iV

h̄

)
φ†
]

Now

(
∂

∂t
+
iV

h̄

)
De−iEt/h̄e−αx =

(
− iE
k

+
iV

h̄

)
De−iEt/h̄e−αx = − i

h̄
(E − V )φ(

∂

∂t
− iV

h̄

)
φ† =

i

h̄
(E − V )φ⇒

ρ(x) =
ih̄

2mc2

[
− i
h̄

(E − V )φ†φ− i

h̄
(E − V )φ†φ

]
=
E − V
2mc2

|D|2e−2αx

Now as distance ∼ 1

2α
∼ h̄c

2
√

(mc2)2 − (E − V )2
. Which is similar to the non-relativistic case.

e) V − E < mc2 so γ = iα is imaginary, but E − V < 0, so from part d), ρ(x) < 0!

f) i) V > E +mc2 or V − E > mc2 ⇒ γ is now real and φE = eiγx for x ≥ 0.

ii) So we have (E − V )2 = h̄2c2γ2 +m2c4 ⇒ 2(E − V )dE = 2h̄2c2γdγ. The group velocity is

vg =
dωγ
dγ

=
d(h̄ωγ)

d(h̄γ)
=

dE

h̄dγ
=

h̄c2γ

E − V

So if vg > 0, and since E − V < 0, γ < 0 that is, negative.

iii)
B

A
=
k − γ
k + γ

=
k − |γ|
k + |γ| > 1

g) Sufficient energy to create antiparticles in the barrier, which move to the left.
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