Physics Honours: Standard Model

Tutorial Sheet 2

Question 1

Kaons all decay into final states that contain no protons or neutrons. What is the baryon number of kaons?

Question 2

An antibaryon interacts with a meson. Can a baryon be produced in such an interaction? Explain

Question 3

Each of the following reactions is forbidden. Determine a conservation law that is violated for each reaction
a) $p+\bar{p} \rightarrow \mu^{+}+e^{-}$
b) $p+\pi^{-} \rightarrow \pi^{+}+p$
c) $p+p \rightarrow \pi^{+}+p$
d) $p+p \rightarrow p+p+n$
e) $p+\gamma \rightarrow \pi^{0}+n$

Question 4

The particle decay $\Sigma^{+} \rightarrow \pi^{+}+n$ is observed in a bubble chamber. The figure below represents the curved tracks of the particles Σ^{+}and π^{+}, and the invisible track of the neutron, in the presence of a uniform magnetic field of $1.15 T$ directed out of the page. The measured radii of curvature are 1.99 m for the Σ^{+}particle and 0.580 m for the π^{+}particle

a) Find the momenta of the Σ^{+}and the π^{+}particles, in units of $M e V / c$
b) The angle between the momenta of the Σ^{+}and the π^{+}particles at the moment of decay is 64.5°. Find the momentum of the neutron
c) Calculate the total energy of the π^{+}particle, and of the neutron, from their known masses $\left(m_{\pi}=139.6 \mathrm{MeV} / \mathrm{c}^{2}, m_{n}=939.6 \mathrm{MeV} / \mathrm{c}^{2}\right)$ and the relativistic energy-momentum relation. What is the total energy of the Σ^{+} particle
d) Calculate the mass and speed of the Σ^{+}particle.

Question 5

Consider an infinitesimal boost along the x-axis (that is, $v / c \ll 1$). Then

$$
a_{\nu}^{\mu}=\delta_{\nu}^{\mu}+\epsilon_{\nu}^{\mu}
$$

Obtain the form of $\epsilon^{\mu}{ }_{\nu}$ and $\epsilon_{\mu \nu}$.

Question 6

Consider a relativistic equation for a free relativistic particle based on the relationship

$$
\begin{align*}
E & =\sqrt{\left(m c^{2}\right)^{2}+p^{2} c^{2}} \\
\hat{E} \phi(\vec{r}, t) & =\sqrt{\left(m c^{2}\right)^{2}+c^{2} \hat{p}^{2}} \phi(\vec{r}, t) \tag{1}
\end{align*}
$$

Show that the solutions of the equation which are eigenstates of energy and momentum are

$$
\phi_{\vec{k}}(\vec{r}, t)=\frac{1}{(2 \pi)^{3 / 2}} e^{-i\left(\omega_{\vec{k}} t-\vec{k} \cdot \vec{r}\right)} ; \omega_{\vec{k}}=\sqrt{c^{2} k^{2}+\left(\frac{m c^{2}}{k}\right)^{2}}
$$

and hence that the most general solution to equation (1) is given by

$$
\phi(\vec{r}, t)=\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} f_{\vec{k}} e^{-i\left(\omega_{\vec{k}} t-\vec{k} \cdot \vec{r}\right)} \quad \text { with } \quad f_{\vec{k}}=\int \frac{d^{3} \vec{r}}{(2 \pi)^{3 / 2}} e^{i\left(\omega_{\vec{k}} t-\vec{k} \cdot \vec{r}\right)} \phi(\vec{r}, t)
$$

Question 7

The Klein paradox. Recall that the Klein-Gordon equation of a particle moving in the presence of a potential $V=q \phi$ in one dimension is given by

$$
\left(i \hbar \frac{\partial}{\partial t}-V\right)^{2} \phi=\left[-c^{2} \hbar^{2} \frac{\partial^{2}}{\partial x^{2}}+m^{2} c^{4}\right] \phi
$$

Consider a particle of energy $E>m c^{2}$ incident on a potential barrier

$$
V(x)= \begin{cases}V & x>0 \\ 0 & x<0\end{cases}
$$

a) Writing $\phi(x, t)=e^{-i E t / \hbar} \phi_{E}(x)$, show that

$$
(E-V)^{2} \phi_{E}(x)=\left[-c^{2} \hbar^{2} \frac{d^{2}}{d x^{2}}+m^{2} c^{4}\right] \phi_{E}(x) .
$$

b) Show that the solution to this equation can be written as

$$
\begin{array}{rll}
\phi_{E}(x)=A e^{i k x}+B e^{-i k x} & x<0 ; & E^{2}=(c \hbar k)^{2}+m^{2} c^{4} \\
\phi_{E}(x)=C e^{i \gamma x} & x>0 ; & (E-V)^{2}=(c \hbar \gamma)^{2}+m^{2} c^{4}
\end{array}
$$

c) Requiring continuity of $\phi_{E}(x)$ and $\frac{d \phi_{E}}{d x}(x)$ at $x=0$, show that

$$
\frac{B}{A}=\frac{k-\gamma}{k+\gamma} \quad ; \quad \frac{C}{A}=\frac{2 k}{k+\gamma}
$$

d) Consider first the case when

$$
V<E<m c^{2}+V
$$

Show that in this case the solution for $x>0$ is given by

$$
\phi_{E}(x)=D e^{-\alpha x} \quad ; \quad \alpha=\frac{1}{\hbar c} \sqrt{\left(m c^{2}\right)^{2}-(E-V)^{2}}
$$

and that the charge density in this region is given by

$$
\rho(x)=\frac{E-V}{m c^{2}}|D|^{2} e^{-2 \alpha x}
$$

(see note at the end of the question). Hence argue why the particle is localised insider the barrier within a distance

$$
\sim \hbar c / 2 \sqrt{\left(m c^{2}\right)^{2}-(E-V)^{2}}
$$

and compare this result with the non-relativistic case.
e) In an attempt to localise further the particle, V is increased so that

$$
V-m c^{2}<E<V
$$

Show that the solution of d) is still valid, but now $\rho(x)<0$!
f) In an effort to localise even further the particle in the barrier, the potential is further increased so that

$$
V>E+m c^{2}
$$

i) Show that γ is real again, that is, there is again a particle current in this region $x>0$!
ii) Show that the group velocity of the current is

$$
v_{g}=\frac{\hbar c-\gamma}{E-V}
$$

and hence that in order for there to be a wave packet moving to the right $\gamma<0$.
iii) Show that when $\gamma<0$, the reflection coefficient B / A is larger than one, that is, more wave is reflected than is incident!
g) Any explanation for the somewhat unusual features of the answers to e) and f)?

Note: Because the particle is coupled to the electromagnetic field (only Coulomb potential in this case), we need to use minimal coupling

$$
\begin{aligned}
i \hbar \frac{\partial}{\partial t} & \rightarrow i \hbar \frac{\partial}{\partial t}-q \phi=i \hbar \frac{\partial}{\partial t}-V \\
\Rightarrow \frac{\partial}{\partial t} & \rightarrow \frac{\partial}{\partial t}+\frac{i}{\hbar} V
\end{aligned}
$$

Answers

Question 1

The baryon number of a proton or neutron is one. Since baryon number is conserved, the baryon number of the kaon must be zero.

Question 2

No. Antibaryons have baryon number -1 , meson have baryon number 0 , and baryons have baryon number +1 . The reaction cannot occur because it would not conserve baryon number, unless so much energy is available that a baryon-antibaryon pair is produced.

Question 3

a) $p+\bar{p} \rightarrow \mu^{+}+e^{-}: L_{e}$ numbers are $0+0 \rightarrow 0+1$, whilst L_{μ} we have $0+0 \rightarrow-1+0$
b) $p+\pi^{-} \rightarrow \pi^{+}+p$: for charge we have $-1+1 \rightarrow+1+1$
c) $p+p \rightarrow p+\pi^{+}$: baryon numbers are $1+1 \rightarrow 1+0$
d) $p+p \rightarrow p+p+n$: baryon numbers are $1+1 \rightarrow 1+1+1$
e) $p+\gamma \rightarrow \pi^{0}+n$: for charge we have $0+1 \rightarrow 0+0$

Question 4

a)

$$
\begin{aligned}
p_{\Sigma^{+}} & =e B r_{\Sigma^{+}}=\frac{\left(1.602177 \times 10^{-19} \mathrm{C}\right)(1.15 \mathrm{~T})(1.99 \mathrm{~m})}{5.344288 \times 10^{-22}(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) /(\mathrm{MeV} / \mathrm{c})} \\
& =686 \mathrm{MeV} / \mathrm{c} \\
p_{\pi^{+}} & =e B r_{\pi^{+}}=\frac{\left(1.602177 \times 10^{-19} \mathrm{C}\right)(1.15 \mathrm{~T})(0.580 \mathrm{~m})}{5.344288 \times 10^{-22}(\mathrm{~kg} \cdot \mathrm{~m} / \mathrm{s}) /(\mathrm{MeV} / \mathrm{c})} \\
& =200 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

b) Let φ be the angle made by the neutron's path with the path of the Σ^{+}at the moment of decay. By conservation of momentum

$$
\begin{aligned}
p_{n} \cos \varphi+(199.961581 \mathrm{MeV} / \mathrm{c}) \cos 64.5^{\circ} & =686.075081 \mathrm{MeV} / \mathrm{c} \\
p_{n} \cos \varphi & =599.989401 \mathrm{MeV} / \mathrm{c} \\
p_{n} \sin \varphi=(199.961581 \mathrm{MeV} / \mathrm{c}) \sin 64.5^{\circ} & =180.482380 \mathrm{MeV} / \mathrm{c} \\
\Rightarrow p_{n} & =\sqrt{(599.989401 \mathrm{MeV} / \mathrm{c})^{2}+(180.482380 \mathrm{MeV} / \mathrm{c})^{2}} \\
& =627 \mathrm{MeV} / \mathrm{c}
\end{aligned}
$$

c)

$$
\begin{aligned}
E_{\pi^{+}} & =\sqrt{\left(p_{\pi^{+}} c\right)^{2}+\left(m_{\pi^{+}} c^{2}\right)^{2}}=\sqrt{(199.961581 M e V)^{2}+(139.6 M e V)^{2}} \\
& =244 \mathrm{MeV} \\
E_{n} & =\sqrt{\left(p_{n} c\right)^{2}+\left(m_{n} c^{2}\right)^{2}}=\sqrt{(626.547022 M e V)^{2}+(939.6 M e V)^{2}} \\
& =1130 \mathrm{MeV} \\
E_{\Sigma^{+}} & =E_{\pi^{+}}+E_{n}=1370 \mathrm{MeV}
\end{aligned}
$$

d)

$$
\begin{aligned}
& m_{\Sigma^{+}} c^{2}=\sqrt{E_{\Sigma^{+}}^{2}-\left(p_{\Sigma^{+}+}\right)^{2}}=\sqrt{(1373.210664 \mathrm{MeV})^{2}-(686.075081 \mathrm{MeV})^{2}} \\
&=1190 \mathrm{MeV} \\
& \Rightarrow m_{\Sigma^{+}}=1190 \mathrm{MeV} / c^{2}
\end{aligned} \underbrace{}_{\Sigma_{\Sigma^{+}}=\gamma m_{\Sigma^{+}} c^{2} \text { where } \gamma=\sqrt{1-\frac{v^{2}}{c^{2}}}=\frac{1373.210664 \mathrm{MeV}}{1189.541303 \mathrm{MeV}}=1.1544 . \text { Solving for } v, v=0.500 c .}
$$

Question 5

From Question 6 a) of tutorial sheet 1 we recall that

$$
a^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
\gamma & -\beta \gamma & 0 & 0 \\
-\beta \gamma & \gamma & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)
$$

where $\gamma=\left(1-\frac{v^{2}}{c^{2}}\right)^{-1 / 2}=\left(1-\beta^{2}\right)^{-1 / 2} \approx 1+\frac{1}{2} \beta^{2}+\ldots=1+\mathcal{O}\left(\beta^{2}\right)$. Therefore, to order $\beta=v / c$

$$
\begin{gathered}
a^{\mu}{ }_{\nu}=\left(\begin{array}{cccc}
1 & -\beta & 0 & 0 \\
-\beta & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)=\left(\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right)+\left(\begin{array}{cccc}
0 & -\beta & 0 & 0 \\
-\beta & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \\
a^{\mu}{ }_{\nu} \approx{\delta^{\mu}}_{\nu}+\epsilon^{\mu}{ }_{\nu} \\
\epsilon_{\mu \nu} \equiv g_{\mu \alpha} \epsilon^{\alpha}{ }_{\nu}=\left(\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 \\
0 & 0 & -1 & 0 \\
0 & 0 & 0 & -1
\end{array}\right)\left(\begin{array}{cccc}
0 & -\beta & 0 & 0 \\
-\beta & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left(\begin{array}{cccc}
0 & -\beta & 0 & 0 \\
\beta & 0 & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{gathered}
$$

Note that this is antisymmetric.

Question 6

$\phi_{\vec{k}}(\vec{r}, t)=\frac{1}{(2 \pi)^{3 / 2}} e^{-i\left(\omega_{\vec{k}} t-\vec{k} \cdot \vec{r}\right)}$ is an eigenfunction of energy and momentum (plane wave) satisfying

$$
\begin{aligned}
\hat{E} \phi_{\vec{k}}(\vec{r}, t) & =i \hbar \frac{\partial}{\partial t} \phi_{\vec{k}}(\vec{r}, t)=\hbar \omega_{\vec{k}} \phi_{\vec{k}}(\vec{r}, t) \\
\hat{\vec{p}} \phi_{\vec{k}}(\vec{r}, t) & =\frac{\hbar}{i} \frac{\partial}{\partial x^{i}} \phi_{\vec{k}}(\vec{r}, t)=\hbar \vec{k} \phi_{\vec{k}}(\vec{r}, t)
\end{aligned}
$$

Therefore $\hat{p}^{2} \phi_{\vec{k}}(\vec{r}, t)=\left(\hbar^{2} k^{2}\right) \phi_{\vec{k}}(\vec{r}, t)$ and in general $\hat{p}^{2 n} \phi_{\vec{k}}(\vec{r}, t)=\left(\hbar^{2} k^{2}\right)^{n} \phi_{\vec{k}}(\vec{r}, t)$.
Therefore $\sqrt{\left(m c^{2}\right)^{2}+c^{2} \hat{p}^{2}} \phi_{\vec{k}}(\vec{r}, t)$ can be defined by a Taylor expansion, and

$$
i \hbar \frac{\partial}{\partial t} \phi_{\vec{k}}(\vec{r}, t)=\hbar \omega_{\vec{k}} \phi_{\vec{k}}(\vec{r}, t)=\sqrt{\left(m c^{2}\right)^{2}-c^{2} \hbar^{2} \nabla^{2}} \phi_{\vec{k}}(\vec{r}, t)=\sqrt{\left(m c^{2}\right)^{2}+c^{2} \hbar^{2} k^{2}} \phi_{\vec{k}}(\vec{r}, t)
$$

Therefore, $\hbar \omega_{\vec{k}}=\sqrt{\left(m c^{2}\right)^{2}+c^{2} \hbar^{2} k^{2}} \Rightarrow \omega_{\vec{k}}=\sqrt{c^{2} k^{2}+\left(\frac{m c^{2}}{k}\right)^{2}}$.
So the most general solution is a linear combination

$$
\phi(\vec{r}, t)=\int d^{3} k f_{\vec{k}} \phi_{\vec{k}}(\vec{r}, t)=\int \frac{d^{3} k}{(2 \pi)^{3 / 2}} f_{\vec{k}} e^{-i\left(\omega_{\vec{k}} t-\vec{k} \cdot \vec{r}\right)}
$$

Question 7

a)

$$
\begin{aligned}
\left(i \hbar \frac{\partial}{\partial t}-V\right)^{2} e^{-i E t / \hbar} \phi_{E}(x) & =\left[-c^{2} \hbar^{2} \frac{\partial^{2}}{\partial x^{2}}+m^{2} c^{4}\right] e^{-i E t / \hbar} \phi_{E}(x) \\
\Rightarrow(E-V)^{2} \phi_{E}(x) & =\left[-c^{2} \hbar^{2} \frac{d^{2}}{d x^{2}}+m^{2} c^{4}\right] \phi_{E}(x)
\end{aligned}
$$

b) For $x<0, V=0 \Rightarrow \phi_{E}=e^{ \pm i k x}$ with $E^{2}=\hbar^{2} c^{2} k^{2}+m^{2} c^{4}$

For $x>0, \quad \phi_{E}=e^{i \gamma x}$ with $(E-V)^{2}=\hbar^{2} c^{2} \gamma^{2}+m^{2} c^{4}$ with other solutions not being physical.
c) From continuity of ϕ_{E} we have $A+B=C$, and from continuity of $\frac{d \phi_{E}}{d x}$ we have $k(A-B)=\gamma C$. Rearranging $A-B=\frac{\gamma}{k} C$ which when added with our first equation give $2 A=\left(1+\frac{\gamma}{k}\right) C=\left(\frac{k+\gamma}{k}\right) C \Rightarrow \frac{C}{A}=\frac{2 k}{k+\gamma}$. If we were to subtract our first and a rearranged second equation $((A-B) k / \gamma=C) \Rightarrow A\left(1-\frac{k}{\gamma}\right)+$ $B\left(1+\frac{k}{\gamma}\right)$ which leads to $\frac{B}{A}=\frac{k-\gamma}{k+\gamma}$.
d) $(E-V)^{2}-m^{2} c^{4}=(c \hbar \gamma)^{2}$, now since $E-V<m c^{2} \Rightarrow \gamma$ is imaginary. So let us call $\gamma=i \alpha$ in which case $\alpha=\frac{1}{c \hbar} \sqrt{\left(m c^{2}\right)^{2}-(E-V)^{2}}$ and $\phi_{E}(x)=D e^{-\alpha x}$.
Note that $\rho(x)=\frac{i \hbar}{2 m c^{2}}\left[\phi^{\dagger}\left(\frac{\partial}{\partial t}+\frac{i V}{\hbar}\right) \phi-\phi\left(\frac{\partial}{\partial t}-\frac{i V}{\hbar}\right) \phi^{\dagger}\right]$

$$
\text { Now } \begin{aligned}
\left(\frac{\partial}{\partial t}+\frac{i V}{\hbar}\right) D e^{-i E t / \hbar} e^{-\alpha x} & =\left(-\frac{i E}{k}+\frac{i V}{\hbar}\right) D e^{-i E t / \hbar} e^{-\alpha x}=-\frac{i}{\hbar}(E-V) \phi \\
\left(\frac{\partial}{\partial t}-\frac{i V}{\hbar}\right) \phi^{\dagger} & =\frac{i}{\hbar}(E-V) \phi \Rightarrow \\
\rho(x) & =\frac{i \hbar}{2 m c^{2}}\left[-\frac{i}{\hbar}(E-V) \phi^{\dagger} \phi-\frac{i}{\hbar}(E-V) \phi^{\dagger} \phi\right]=\frac{E-V}{2 m c^{2}}|D|^{2} e^{-2 \alpha x}
\end{aligned}
$$

Now as distance $\sim \frac{1}{2 \alpha} \sim \frac{\hbar c}{2 \sqrt{\left(m c^{2}\right)^{2}-(E-V)^{2}}}$. Which is similar to the non-relativistic case.
e) $V-E<m c^{2}$ so $\gamma=i \alpha$ is imaginary, but $E-V<0$, so from part d), $\rho(x)<0$!
f) i) $V>E+m c^{2}$ or $V-E>m c^{2} \Rightarrow \gamma$ is now real and $\phi_{E}=e^{i \gamma x}$ for $x \geq 0$.
ii) So we have $(E-V)^{2}=\hbar^{2} c^{2} \gamma^{2}+m^{2} c^{4} \Rightarrow 2(E-V) d E=2 \hbar^{2} c^{2} \gamma d \gamma$. The group velocity is

$$
v_{g}=\frac{d \omega_{\gamma}}{d \gamma}=\frac{d\left(\hbar \omega_{\gamma}\right)}{d(\hbar \gamma)}=\frac{d E}{\hbar d \gamma}=\frac{\hbar c^{2} \gamma}{E-V}
$$

So if $v_{g}>0$, and since $E-V<0, \gamma<0$ that is, negative.
iii)

$$
\frac{B}{A}=\frac{k-\gamma}{k+\gamma}=\frac{k-|\gamma|}{k+|\gamma|}>1
$$

g) Sufficient energy to create antiparticles in the barrier, which move to the left.

