
Physics Honours: Standard Model

Tutorial Sheet 4

Question 1

Consider the transformation of the 4-vector
(

1,~0
)

under a boost in the ẑ direction:(
1,~0
)
→
(
γ,−

√
γ2 − 1ẑ

)
,

where γ =
√
v2 − 1 parameterises the boost.

Writing γ = coshφ show that the boost corresponds to the transformation matrix Q = exp (σ3φ/2)
(note that there is no i in our matrix representation).

Question 2

Consider the Dirac representation of the αi and β matrices given in class. Verify explicitly (using 2 × 2 block
notation) that

i) αi and β are Hermitian

ii) α2
i = β2 = 1

iii) {αi, αj} = 2δij

iv) {β, αi} = 0

Question 3

From the definitions of the gamma matrices γµ, and the properties from question 2 for the αi’s and β, show that

γi † = −γi γ0 † = γ0 {γµ, γν} = 2ηµν

Question 4

Define the “gamma five” matrix γ5 to be
γ5 = iγ0γ1γ2γ3

Show that γ25 = 1, {γ5, γµ} = 0, and obtain an explicit representation of γ5 for both the Dirac and chiral
representations.
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Question 5

From lectures we have 〈0 |u+(0)| k〉 ∝
(

1
0

)
, show that Jz|k〉 = λ|k〉 where λ = 1

2 by considering how u+(0)

transforms under rotations about the z-axis by an angle θ.

Note that you can similarly show for the spinor v+ ∝
(

1
0

)
multiplying a creation operator creates a state with

angular momentum − 1
2 along the direction of motion.

Question 6

The Dirac spinor in momentum space can be written as:

u(p,±) =
√

2m

 1
~σ · ~p
E +m

χ± ,

where (~σ · p̂)χ± = ±χ± with p̂ = ~p/|~p|.

Show that the left-handed and right-handed spinors given by:

uL(p) =
1

2
(1− γ5)u(p,−) , uR(p) =

1

2
(1 + γ5)u(p,+) ,

are eigenstates of the helicity operator λ = ~s · ~p in the massless limit, where the spin operator is of the form

~s =
1

2

(
~σ 0
0 ~σ

)
.

Note that the same calculation should also show that the other two combinations:

1

2
(1 + γ5)u(p,−) ,

1

2
(1− γ5)u(p,+) ,

are identically zero in the same limit

Question 7

Recall that for an infinitesimal Lorentz transformation the Dirac spinor transforms according to:

ψ(x) → ψ′(x′) = Sψ(x) where

S = 1− i

4
σµνε

µν + . . .

andενµγ
µ = − i

4
εαβ [γν , σαβ ]

Show that this implies 2i
[
δναγβ − δνβγα

]
= [γν , σαβ ].

2



Question 8

Show that P 2
R = PR, P 2

L = PL, PRPL = 0 and PR + PL = 1. Also, show that if {γµ, γν} = 2ηµν then[
γαγβ , γµγν

]
= 2ηβµγαγν − 2ηαµγβγν + 2ηβνγµγα − 2ηανγµγβ

Question 9

The Weyl representation of the Clifford algebra is given by:

γ0W =

(
0 1
1 0

)
, γiW =

(
0 −σi
σi 0

)
.

Find a unitary matrix U such that
γµD = UγµWU

† ,

where γµD form the Dirac representation of the Clifford algebra:

γ0D =

(
1 0
0 −1

)
, γiD =

(
0 σi
−σi 0

)
.

Question 10

For a particle described by a spinor u(p, λ) we can define the polarisation four-vector sµ(p, λ) as:

sµ(p, λ) =
1

2m
ū(p, λ)γµγ5u(p, λ) .

a) Show that s · p = 0.

b) Calculate sµ for the particle at rest (~p = 0), with χ+ =

(
1
0

)
, χ− =

(
0
1

)
.

c) Show that s2 = −1.

d) Suppose for a particle at rest the polarisation vector is given by:

sµ = (0, ~η) with ~η2 = 1 .

Show that in the frame where the particle moves with momentum ~p, the spin vector sµ is given by:

s0 =
~η · ~p
m

, ~s = ~η +
~p(~η · ~p)

(E +m)m
.
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Answers

Question 1

Our vector transforms in matrix form are:

X ′ = QXQ†(
coshφ+ sinhφ 0

0 coshφ− sinhφ

)
=

(
eφ/2 0

0 e−φ/2

)(
1 0
0 1

)(
eφ/2 0

0 e−φ/2

)
=

(
eφ 0
0 e−φ

)
as Q = Q† and

eφ = coshφ+ sinhφ

e−φ = coshφ− sinhφ

which shows what we had wanted to show.

Question 2

αi =

(
0 σi
σi 0

)
, β =

(
1 0
0 −1

)
, σ2

i = 1 , σ†i = σi

i)

α†i =

(
0 σ†i
σ†i 0

)
=

(
0 σi
σi 0

)
= αi

β† =

(
1 0
0 −1

)
= β

ii)

α2
i =

(
0 σi
σi 0

)(
0 σi
σi 0

)
=

(
σ2
i 0

0 σ2
i

)
=

(
1 0
0 1

)
= 14

β2 =

(
1 0
0 −1

)(
1 0
0 −1

)
=

(
1 0
0 1

)
= 14

iii)

αiαj + αjαi =

(
0 σi
σi 0

)(
0 σj
σj 0

)
+

(
0 σj
σj 0

)(
0 σi
σi 0

)
=

(
σiσj + σjσi 0

0 σiσj + σjσi

)
but σiσj = δij + iεijkσk ⇒ σiσj + σjσi = 2δij

⇒ αiαj + αjαi =

(
2δij 0

0 2δij

)
= 2δij14

iv)

βαi + αiβ =

(
1 0
0 −1

)(
0 σi
σi 0

)
+

(
0 σi
σi 0

)(
1 0
0 −1

)
=

(
0 σi
−σi 0

)
+

(
0 σi
−σi 0

)
= 0
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Question 3

γi =

(
0 σi
−σi 0

)
γ0 =

(
1 0
0 −1

)
γi † =

(
0 σ†i
−σi† 0

)
=

(
0 −σi
σi 0

)
= −γi γ0 † = β† = β = γ0

{γ0, γ0} = 2(γ0)2 = 2

(
1 0
0 −1

)(
1 0
0 −1

)
= 2

(
1 0
0 1

)
= 2 · 14

{γ0, γi} = γ0γi + γiγ0 =

(
1 0
0 −1

)(
0 σi
−σi 0

)
+

(
0 σi
−σi 0

)(
1 0
0 −1

)
=

(
0 σi
σi 0

)
+

(
0 −σi
−σi 0

)
= 0

{γi, γj} =

(
0 σi
−σi 0

)(
0 σj
−σj 0

)
+

(
0 σj
−σj 0

)(
0 σi
−σi 0

)
=

(
−σiσj − σjσi 0

0 −σiσj − σjσi

)
= −2δij

(
1 0
0 1

)
= −2δij14

Therefore {γµ, γν} = 2ηµν .

Question 4

γ5 = iγ0γ1γ2γ3

(γ5)2 = (−)γ0γ1γ2γ3γ0γ1γ2γ3 = (+)(γ0)2γ1γ2γ3γ1γ2γ3

= (+)(γ1)2γ2γ3γ2γ3 = (−)γ2γ3γ2γ3 = (+)(γ2)2(γ3)2 = (−1)2 = 14

{γ0, γ5} = iγ0γ0γ1γ2γ3 + iγ0γ1γ2γ3γ0 = iγ1γ2γ3 + i(−)3(γ0)2γ1γ2γ3 = 0

{γ1, γ5} = iγ1γ0γ1γ2γ3 + iγ1γ0γ1γ2γ3γ1 = −iγ0(γ1)2γ2γ3 + i(−)2γ0(γ1)2γ2γ3 = 0

Similarly for γ2 and γ3, which gives us {γµ, γ5} = 0.

Question 5

We know that rotations are given by:

UR(ẑ, θ)|k〉 = e−iθ/2|k〉 UR(ẑ, θ)|0〉 = |0〉

and that a spinor transforms as:

|ψ〉 → UR(ê, θ)|ψ〉 = exp (−iJ · êθ) |ψ〉 = exp (−i~σ · êθ) |ψ〉

So U†R(ẑ, θ)u+(0)UR(ẑ, θ) = exp (−iσ3θ/2)u+(0), that is:

〈0|U†Ru+(0)UR|k〉 = 〈0|e−iσ3θ/2u+(0)|k〉

∝ e−iσ3θ/2

(
1
0

)
= e−iθ/2

(
1
0

)
= e−iλθ

(
1
0

)
where we recall that Jz = σ3/2, in which case λ = 1

2 .
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Question 6

In the standard (Dirac) representation, we have

γ5 =

(
0 1
1 0

)
.

Thus

uL(p) =
1

2
(1− γ5)u(p,−) =

1

2

(
1 −1
−1 1

)(
1
~σ·~p
E+m

)
χ−

=
1

2

(
1 −1
−1 1

)(
1
−p
E

)
χ− =

1

2

(
E + p

E

)(
1
−1

)
χ−

=

(
1
−1

)
χ−

where we have used E = p for the massless particle. Similarly

uR(p) =
1

2
(1 + γ5)u(p,+) =

(
1
1

)
χ+ .

Then

λuL(p) =
1

2

(
~σ · p̂ 0

0 ~σ · p̂

)(
1
−1

)
χ−

=
1

2

(
1
−1

)
~σ · p̂χ− = −1

2
uL(p) .

Similarly, we have

λuR(p) =
1

2
uR(p) .

Question 7

ενµγ
µ = ενµγµ =

1

2
(ενµγµ − εµνγµ)

=
1

2

(
εαβδναγβ − εαβδνβγα

)
Therefore

1

2
εαβ

(
δναγβ − δνβγα

)
= − i

4
εαβ [γν , σαβ ]

⇒ 2i
(
δναγβ − δνβγα

)
= [γν , σαβ ]

Note: [A, [B,C]] = {{A,B}, C} − {{A,C}, B}, therefore

i

2
[γν , [γα, γβ ]] =

i

2
{{γν , γα}, γβ} −

i

2
{{γν , γβ}, γα}

=
i

2
{2δνα, γβ} −

i

2

{
2δνβ , γα

}
= 2i

(
δναγβ − δνβγα

)
Question 8

P 2
R =

1

4
(1 + γ5)(1 + γ5) =

1

4
(1 + 2γ5 + γ25)

=
1

2
(1 + γ5) = PR
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P 2
L =

1

4
(1− γ5)(1− γ5) =

1

4
(1− 2γ5 + γ25)

=
1

2
(1− γ5) = PL

PRPL =
1

4
(1 + γ5)(1− γ5) =

1

4
(1− γ25) = 0

PR + PL =
1

2
(1 + γ5 + 1− γ5) = 1

and finally [
γαγβ , γµγν

]
= γαγβγµγν − γµγνγαγβ = γα

(
2ηβµ − γµγβ

)
γν − γµ (2ηαν − γαγν) γβ

= 2ηβµγαγν − (2ηαµ − γµγα) γβγν + γµγα
(
2ηνβ − γβγν

)
− 2ηανγµγβ

= 2ηβµγαγν − 2ηαµγβγν + 2ηνβγµγα − 2ηανγµγβ

Question 9

We need a unitary transformation such that
γµD = UγµWU

†

which we can re-write as (given the U is unitary)

γµDU = UγµW .

Let U =

(
a b
c d

)
, then for µ = 0:

(
1 0
0 −1

)(
a b
c d

)
=

(
a b
c d

)(
0 1
1 0

)
(
a b
−c −d

)
=

(
b a
d c

)
(1)

That is, a = b and c = −d. Furthermore

UU† = 1 ⇒
(
a a
c −c

)(
a∗ c∗

a∗ −c∗
)

=

(
1 0
0 1

)
which further implies that |a|2 = 1

2 and |c|2 = 1
2 . Taking the positive sign implies

U =
1√
2

(
1 1
1 −1

)
.

We can check that this is a valid solution by showing that

γiD = UγiWU
†(

0 σi
−σi 0

)
=

1

2

(
1 1
1 −1

)(
0 −σi
σi 0

)(
1 1
1 −1

)
=

(
0 σi
−σi 0

)

Question 10

a) Through a simple application of the Dirac equation, we have

s.p =
1

2m
ū(p, λ)p/γ5u(p, λ) =

1

2
ū(p, λ)γ5u(p, λ)
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or, alternatively,

s.p =
1

2m
ū(p, λ)γ5(−p/)u(p, λ) = −1

2
ū(p, λ)γ5u(p, λ) .

Thus s.p = 0.

b) For a particle at rest, where we have u(p, λ) =
√

2m

(
1
0

)
χλ, pµ = (m, 0, 0, 0) and s.p = 0 we get

s0 = 0

and

~s =
1

2m
ū(0, λ)γiγ5u(0, λ)

= χ†λ(1, 0)

(
0 ~σ
~σ 0

)(
0 1
1 0

)(
1
0

)
χλ = χ†λ~σχλ .

Thus s1 = s2 = 0 and

s3 =

{
1 for χ+

−1 for χ−
.

This means s is in the direction of the spin. In this simple frame we have

sµ = (0, 0, 0,±1) , s2 = −1 .

c) The spin vector

sµ(p, λ) =
1

2m
ū(p, λ)γµγ5u(p, λ)

transforms as a four-vector under Lorentz transformations. Thus s2 = sµsµ is a Lorentz scalar and s2 = −1
in all frames.

d) Since ~η and ~p are the only vectors in the problem, we can write

~s = a~η + b~p , a and b are constants.

Since we are given ~s = ~η when the particle is at rest ~p = 0, we mut have a = 1. From s.p = 0, we get

s0 =
1

E
(~η + b~p) · ~p =

1

E
(~η · ~p+ bp2)

and the condition s2 = −1 can now be written as

s20 − ~s2 = s20 − (~η + b~p)2 = −1

which leads to
1

E2
(~η + b~p)2 = (~η + b~p)2 − 1

or
b2(E2 −m2)m2 + 2b(~η · ~p)m2 − (~η · ~p)2 = 0

or
[m(E −m)b+ (~η · ~p)] [m(E −m)b− (~η · ~p)] = 0 .

This gives the solution

b =
(~η · ~p)

m(E +m)
.

(The other solution does not go to zero as ~p→ 0.) Thus we have

~s = ~η +
~p(~η · ~p)

m(E +m)
.
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