Physics Honours: Standard Model

Tutorial Sheet 4

Question 1

Consider the transformation of the 4 -vector $(1, \overrightarrow{0})$ under a boost in the \hat{z} direction:

$$
(1, \overrightarrow{0}) \rightarrow\left(\gamma,-\sqrt{\gamma^{2}-1} \hat{z}\right)
$$

where $\gamma=\sqrt{v^{2}-1}$ parameterises the boost.
Writing $\gamma=\cosh \phi$ show that the boost corresponds to the transformation matrix $Q=\exp \left(\sigma_{3} \phi / 2\right)$ (note that there is no i in our matrix representation).

Question 2

Consider the Dirac representation of the α_{i} and β matrices given in class. Verify explicitly (using 2×2 block notation) that
i) α_{i} and β are Hermitian
ii) $\alpha_{i}^{2}=\beta^{2}=1$
iii) $\left\{\alpha_{i}, \alpha_{j}\right\}=2 \delta_{i j}$
iv) $\left\{\beta, \alpha_{i}\right\}=0$

Question 3

From the definitions of the gamma matrices γ^{μ}, and the properties from question 2 for the α_{i} 's and β, show that

$$
\gamma^{i \dagger}=-\gamma^{i} \quad \gamma^{0 \dagger}=\gamma^{0} \quad\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}
$$

Question 4

Define the "gamma five" matrix γ_{5} to be

$$
\gamma_{5}=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}
$$

Show that $\gamma_{5}^{2}=1$, $\left\{\gamma_{5}, \gamma^{\mu}\right\}=0$, and obtain an explicit representation of γ_{5} for both the Dirac and chiral representations.

Question 5

From lectures we have $\langle 0| u_{+}(0)|k\rangle \propto\binom{1}{0}$, show that $J_{z}|k\rangle=\lambda|k\rangle$ where $\lambda=\frac{1}{2}$ by considering how $u_{+}(0)$ transforms under rotations about the z-axis by angle θ.

Note that you can similarly show for the spinor $v_{+} \propto\binom{1}{0}$ multiplying a creation operator creates a state with angular momentum $-\frac{1}{2}$ along the direction of motion.

Question 6

The Dirac spinor in momentum space can be written as:

$$
u(p, \pm)=\sqrt{2 m}\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}} \chi_{ \pm}
$$

where $(\vec{\sigma} \cdot \hat{p}) \chi_{ \pm}= \pm \chi_{ \pm}$with $\hat{p}=\vec{p} /|\vec{p}|$.
Show that the left-handed and right-handed spinors given by:

$$
u_{L}(p)=\frac{1}{2}\left(1-\gamma_{5}\right) u(p,-), u_{R}(p)=\frac{1}{2}\left(1+\gamma_{5}\right) u(p,+)
$$

are eigenstates of the helicity operator $\lambda=\vec{s} \cdot \vec{p}$ in the massless limit, where the spin operator is of the form

$$
\vec{s}=\frac{1}{2}\left(\begin{array}{cc}
\vec{\sigma} & 0 \\
0 & \vec{\sigma}
\end{array}\right) .
$$

Note that the same calculation should also show that the other two combinations:

$$
\frac{1}{2}\left(1+\gamma_{5}\right) u(p,-), \quad \frac{1}{2}\left(1-\gamma_{5}\right) u(p,+)
$$

are identically zero in the same limit

Question 7

Recall that for an infinitesimal Lorentz transformation the Dirac spinor transforms according to:

$$
\begin{aligned}
\psi(x) & \rightarrow \psi^{\prime}\left(x^{\prime}\right)=S \psi(x) \text { where } \\
S & =1-\frac{i}{4} \sigma_{\mu \nu} \epsilon^{\mu \nu}+\ldots \\
\operatorname{and} \epsilon_{\mu}^{\nu} \gamma^{\mu} & =-\frac{i}{4} \epsilon^{\alpha \beta}\left[\gamma^{\nu}, \sigma_{\alpha \beta}\right]
\end{aligned}
$$

Show that this implies $2 i\left[\delta_{\alpha}^{\nu} \gamma_{\beta}-\delta_{\beta}^{\nu} \gamma_{\alpha}\right]=\left[\gamma^{\nu}, \sigma_{\alpha \beta}\right]$.

Question 8

Show that $P_{R}^{2}=P_{R}, P_{L}^{2}=P_{L}, P_{R} P_{L}=0$ and $P_{R}+P_{L}=1$. Also, show that if $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$ then

$$
\left[\gamma^{\alpha} \gamma^{\beta}, \gamma^{\mu} \gamma^{\nu}\right]=2 \eta^{\beta \mu} \gamma^{\alpha} \gamma^{\nu}-2 \eta^{\alpha \mu} \gamma^{\beta} \gamma^{\nu}+2 \eta^{\beta \nu} \gamma^{\mu} \gamma^{\alpha}-2 \eta^{\alpha \nu} \gamma^{\mu} \gamma^{\beta}
$$

Question 9

The Weyl representation of the Clifford algebra is given by:

$$
\gamma_{W}^{0}=\left(\begin{array}{ll}
0 & \mathbf{1} \\
\mathbf{1} & 0
\end{array}\right), \quad \gamma_{W}^{i}=\left(\begin{array}{cc}
0 & -\sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)
$$

Find a unitary matrix U such that

$$
\gamma_{D}^{\mu}=U \gamma_{W}^{\mu} U^{\dagger}
$$

where γ_{D}^{μ} form the Dirac representation of the Clifford algebra:

$$
\gamma_{D}^{0}=\left(\begin{array}{cc}
\mathbf{1} & 0 \\
0 & -\mathbf{1}
\end{array}\right), \quad \gamma_{D}^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
$$

Question 10

For a particle described by a spinor $u(p, \lambda)$ we can define the polarisation four-vector $s_{\mu}(p, \lambda)$ as:

$$
s_{\mu}(p, \lambda)=\frac{1}{2 m} \bar{u}(p, \lambda) \gamma_{\mu} \gamma_{5} u(p, \lambda) .
$$

a) Show that $s \cdot p=0$.
b) Calculate s_{μ} for the particle at rest $(\vec{p}=0)$, with $\chi_{+}=\binom{1}{0}, \quad \chi_{-}=\binom{0}{1}$.
c) Show that $s^{2}=-1$.
d) Suppose for a particle at rest the polarisation vector is given by:

$$
s^{\mu}=(0, \vec{\eta}) \quad \text { with } \quad \vec{\eta}^{2}=1
$$

Show that in the frame where the particle moves with momentum \vec{p}, the spin vector s^{μ} is given by:

$$
s^{0}=\frac{\vec{\eta} \cdot \vec{p}}{m}, \quad \vec{s}=\vec{\eta}+\frac{\vec{p}(\vec{\eta} \cdot \vec{p})}{(E+m) m}
$$

Answers

Question 1

Our vector transforms in matrix form are:

$$
\begin{aligned}
X^{\prime} & =Q X Q^{\dagger} \\
\left(\begin{array}{cc}
\cosh \phi+\sinh \phi & 0 \\
0 & \cosh \phi-\sinh \phi
\end{array}\right) & =\left(\begin{array}{cc}
e^{\phi / 2} & 0 \\
0 & e^{-\phi / 2}
\end{array}\right)\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)\left(\begin{array}{cc}
e^{\phi / 2} & 0 \\
0 & e^{-\phi / 2}
\end{array}\right) \\
& =\left(\begin{array}{cc}
e^{\phi} & 0 \\
0 & e^{-\phi}
\end{array}\right)
\end{aligned}
$$

as $Q=Q^{\dagger}$ and

$$
\begin{aligned}
e^{\phi} & =\cosh \phi+\sinh \phi \\
e^{-\phi} & =\cosh \phi-\sinh \phi
\end{aligned}
$$

which shows what we had wanted to show.

Question 2

$$
\alpha_{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right), \quad \beta=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right), \quad \sigma_{i}^{2}=1, \quad \sigma_{i}^{\dagger}=\sigma_{i}
$$

i)

$$
\begin{gathered}
\alpha_{i}^{\dagger}=\left(\begin{array}{cc}
0 & \sigma_{i}^{\dagger} \\
\sigma_{i}^{\dagger} & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)=\alpha_{i} \\
\beta^{\dagger}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\beta
\end{gathered}
$$

ii)

$$
\begin{gathered}
\alpha_{i}^{2}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)=\left(\begin{array}{cc}
\sigma_{i}^{2} & 0 \\
0 & \sigma_{i}^{2}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{4} \\
\beta^{2}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=1_{4}
\end{gathered}
$$

iii)

$$
\begin{aligned}
\alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i} & =\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \sigma_{j} \\
\sigma_{j} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right) \\
& =\left(\begin{array}{cc}
\sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i} & 0 \\
0 & \sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}
\end{array}\right) \\
\text { but } \sigma_{i} \sigma_{j}=\delta_{i j}+i \epsilon_{i j k} \sigma_{k} & \Rightarrow \sigma_{i} \sigma_{j}+\sigma_{j} \sigma_{i}=2 \delta_{i j} \\
\Rightarrow \alpha_{i} \alpha_{j}+\alpha_{j} \alpha_{i} & =\left(\begin{array}{cc}
2 \delta_{i j} & 0 \\
0 & 2 \delta_{i j}
\end{array}\right)=2 \delta_{i j} 1_{4}
\end{aligned}
$$

iv)

$$
\begin{aligned}
\beta \alpha_{i}+\alpha_{i} \beta & =\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)=0
\end{aligned}
$$

Question 3

$$
\begin{gathered}
\gamma^{i}=\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) \quad \gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
\gamma^{i \dagger}=\left(\begin{array}{cc}
0 & \sigma_{i}^{\dagger} \\
-\sigma_{i} \dagger & 0
\end{array}\right)=\left(\begin{array}{cc}
0 & -\sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)=-\gamma^{i} \quad \gamma^{0 \dagger}=\beta^{\dagger}=\beta=\gamma^{0} \\
\left\{\gamma^{0}, \gamma^{0}\right\}=2\left(\gamma^{0}\right)^{2}=2\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)=2\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=2 \cdot 1_{4} \\
\left\{\gamma^{0}, \gamma^{i}\right\}=\gamma^{0} \gamma^{i}+\gamma^{i} \gamma^{0}=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
=\left(\begin{array}{cc}
0 & \sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & -\sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)=0 \\
\begin{cases}0 & \sigma_{i} \\
\left\{\gamma^{i}, \gamma^{j}\right\}= & \left(\begin{array}{cc}
0 & \sigma_{j} \\
-\sigma_{i} & 0
\end{array}\right)+\left(\begin{array}{cc}
0 & \sigma_{j} \\
-\sigma_{j} & 0
\end{array}\right)\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)=\left(\begin{array}{cc}
-\sigma_{i} \sigma_{j}-\sigma_{j} \sigma_{i} & 0 \\
0 & -\sigma_{i} \sigma_{j}-\sigma_{j} \sigma_{i}
\end{array}\right) \\
=-2 \delta_{i j}\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)=-2 \delta_{i j} 1_{4}\end{cases}
\end{gathered}
$$

Therefore $\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu}$.

Question 4

$$
\begin{aligned}
\gamma_{5} & =i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \\
\left(\gamma_{5}\right)^{2} & =(-) \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}=(+)\left(\gamma^{0}\right)^{2} \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{1} \gamma^{2} \gamma^{3} \\
& =(+)\left(\gamma^{1}\right)^{2} \gamma^{2} \gamma^{3} \gamma^{2} \gamma^{3}=(-) \gamma^{2} \gamma^{3} \gamma^{2} \gamma^{3}=(+)\left(\gamma^{2}\right)^{2}\left(\gamma^{3}\right)^{2}=(-1)^{2}=1_{4} \\
\left\{\gamma^{0}, \gamma_{5}\right\} & =i \gamma^{0} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}+i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{0}=i \gamma^{1} \gamma^{2} \gamma^{3}+i(-)^{3}\left(\gamma^{0}\right)^{2} \gamma^{1} \gamma^{2} \gamma^{3}=0 \\
\left\{\gamma^{1}, \gamma_{5}\right\} & =i \gamma^{1} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}+i \gamma^{1} \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3} \gamma^{1}=-i \gamma^{0}\left(\gamma^{1}\right)^{2} \gamma^{2} \gamma^{3}+i(-)^{2} \gamma^{0}\left(\gamma^{1}\right)^{2} \gamma^{2} \gamma^{3}=0
\end{aligned}
$$

Similarly for γ^{2} and γ^{3}, which gives us $\left\{\gamma^{\mu}, \gamma_{5}\right\}=0$.

Question 5

We know that rotations are given by:

$$
U_{R}(\hat{z}, \theta)|k\rangle=e^{-i \theta / 2}|k\rangle \quad U_{R}(\hat{z}, \theta)|0\rangle=|0\rangle
$$

and that a spinor transforms as:

$$
|\psi\rangle \rightarrow U_{R}(\hat{e}, \theta)|\psi\rangle=\exp (-i \mathbf{J} \cdot \hat{e} \theta)|\psi\rangle=\exp (-i \vec{\sigma} \cdot \hat{e} \theta)|\psi\rangle
$$

So $U_{R}^{\dagger}(\hat{z}, \theta) u_{+}(0) U_{R}(\hat{z}, \theta)=\exp \left(-i \sigma_{3} \theta / 2\right) u_{+}(0)$, that is:

$$
\begin{aligned}
\langle 0| U_{R}^{\dagger} u_{+}(0) U_{R}|k\rangle & =\langle 0| e^{-i \sigma_{3} \theta / 2} u_{+}(0)|k\rangle \\
& \propto e^{-i \sigma_{3} \theta / 2}\binom{1}{0}=e^{-i \theta / 2}\binom{1}{0}=e^{-i \lambda \theta}\binom{1}{0}
\end{aligned}
$$

where we recall that $J_{z}=\sigma_{3} / 2$, in which case $\lambda=\frac{1}{2}$.

Question 6

In the standard (Dirac) representation, we have

$$
\gamma_{5}=\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)
$$

Thus

$$
\begin{aligned}
u_{L}(p) & =\frac{1}{2}\left(1-\gamma_{5}\right) u(p,-)=\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\binom{1}{\frac{\vec{\sigma} \cdot \vec{p}}{E+m}} \chi_{-} \\
& =\frac{1}{2}\left(\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right)\binom{1}{\frac{-p}{E}} \chi_{-}=\frac{1}{2}\left(\frac{E+p}{E}\right)\binom{1}{-1} \chi_{-} \\
& =\binom{1}{-1} \chi_{-}
\end{aligned}
$$

where we have used $E=p$ for the massless particle. Similarly

$$
u_{R}(p)=\frac{1}{2}\left(1+\gamma_{5}\right) u(p,+)=\binom{1}{1} \chi_{+} .
$$

Then

$$
\begin{aligned}
\lambda u_{L}(p) & =\frac{1}{2}\left(\begin{array}{cc}
\vec{\sigma} \cdot \hat{p} & 0 \\
0 & \vec{\sigma} \cdot \hat{p}
\end{array}\right)\binom{1}{-1} \chi_{-} \\
& =\frac{1}{2}\binom{1}{-1} \vec{\sigma} \cdot \hat{p} \chi_{-}=-\frac{1}{2} u_{L}(p) .
\end{aligned}
$$

Similarly, we have

$$
\lambda u_{R}(p)=\frac{1}{2} u_{R}(p)
$$

Question 7

$$
\begin{aligned}
\epsilon_{\mu}^{\nu} \gamma^{\mu} & =\epsilon^{\nu \mu} \gamma_{\mu}=\frac{1}{2}\left(\epsilon^{\nu \mu} \gamma_{\mu}-\epsilon^{\mu \nu} \gamma_{\mu}\right) \\
& =\frac{1}{2}\left(\epsilon^{\alpha \beta} \delta_{\alpha}^{\nu} \gamma_{\beta}-\epsilon^{\alpha \beta} \delta_{\beta}^{\nu} \gamma_{\alpha}\right)
\end{aligned}
$$

$$
\text { Therefore } \frac{1}{2} \epsilon^{\alpha \beta}\left(\delta_{\alpha}^{\nu} \gamma_{\beta}-\delta_{\beta}^{\nu} \gamma_{\alpha}\right)=-\frac{i}{4} \epsilon^{\alpha \beta}\left[\gamma^{\nu}, \sigma_{\alpha \beta}\right]
$$

$$
\Rightarrow 2 i\left(\delta_{\alpha}^{\nu} \gamma_{\beta}-\delta_{\beta}^{\nu} \gamma_{\alpha}\right)=\left[\gamma^{\nu}, \sigma_{\alpha \beta}\right]
$$

Note: $[A,[B, C]]=\{\{A, B\}, C\}-\{\{A, C\}, B\}$, therefore

$$
\begin{aligned}
\frac{i}{2}\left[\gamma^{\nu},\left[\gamma_{\alpha}, \gamma_{\beta}\right]\right] & =\frac{i}{2}\left\{\left\{\gamma^{\nu}, \gamma_{\alpha}\right\}, \gamma_{\beta}\right\}-\frac{i}{2}\left\{\left\{\gamma^{\nu}, \gamma_{\beta}\right\}, \gamma_{\alpha}\right\} \\
& =\frac{i}{2}\left\{2 \delta_{\alpha}^{\nu}, \gamma_{\beta}\right\}-\frac{i}{2}\left\{2 \delta_{\beta}^{\nu}, \gamma_{\alpha}\right\} \\
& =2 i\left(\delta_{\alpha}^{\nu} \gamma_{\beta}-\delta_{\beta}^{\nu} \gamma_{\alpha}\right)
\end{aligned}
$$

Question 8

$$
\begin{aligned}
P_{R}^{2} & =\frac{1}{4}\left(1+\gamma_{5}\right)\left(1+\gamma_{5}\right)=\frac{1}{4}\left(1+2 \gamma_{5}+\gamma_{5}^{2}\right) \\
& =\frac{1}{2}\left(1+\gamma_{5}\right)=P_{R}
\end{aligned}
$$

$$
\begin{aligned}
P_{L}^{2} & =\frac{1}{4}\left(1-\gamma_{5}\right)\left(1-\gamma_{5}\right)=\frac{1}{4}\left(1-2 \gamma_{5}+\gamma_{5}^{2}\right) \\
& =\frac{1}{2}\left(1-\gamma_{5}\right)=P_{L} \\
P_{R} P_{L} & =\frac{1}{4}\left(1+\gamma_{5}\right)\left(1-\gamma_{5}\right)=\frac{1}{4}\left(1-\gamma_{5}^{2}\right)=0 \\
P_{R}+P_{L} & =\frac{1}{2}\left(1+\gamma_{5}+1-\gamma_{5}\right)=1
\end{aligned}
$$

and finally

$$
\begin{aligned}
{\left[\gamma^{\alpha} \gamma^{\beta}, \gamma^{\mu} \gamma^{\nu}\right] } & =\gamma^{\alpha} \gamma^{\beta} \gamma^{\mu} \gamma^{\nu}-\gamma^{\mu} \gamma^{\nu} \gamma^{\alpha} \gamma^{\beta}=\gamma^{\alpha}\left(2 \eta^{\beta \mu}-\gamma^{\mu} \gamma^{\beta}\right) \gamma^{\nu}-\gamma^{\mu}\left(2 \eta^{\alpha \nu}-\gamma^{\alpha} \gamma^{\nu}\right) \gamma^{\beta} \\
& =2 \eta^{\beta \mu} \gamma^{\alpha} \gamma^{\nu}-\left(2 \eta^{\alpha \mu}-\gamma^{\mu} \gamma^{\alpha}\right) \gamma^{\beta} \gamma^{\nu}+\gamma^{\mu} \gamma^{\alpha}\left(2 \eta^{\nu \beta}-\gamma^{\beta} \gamma^{\nu}\right)-2 \eta^{\alpha \nu} \gamma^{\mu} \gamma^{\beta} \\
& =2 \eta^{\beta \mu} \gamma^{\alpha} \gamma^{\nu}-2 \eta^{\alpha \mu} \gamma^{\beta} \gamma^{\nu}+2 \eta^{\nu \beta} \gamma^{\mu} \gamma^{\alpha}-2 \eta^{\alpha \nu} \gamma^{\mu} \gamma^{\beta}
\end{aligned}
$$

Question 9

We need a unitary transformation such that

$$
\gamma_{D}^{\mu}=U \gamma_{W}^{\mu} U^{\dagger}
$$

which we can re-write as (given the U is unitary)

$$
\gamma_{D}^{\mu} U=U \gamma_{W}^{\mu}
$$

Let $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, then for $\mu=0$:

$$
\begin{align*}
\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) & =\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \\
\left(\begin{array}{cc}
a & b \\
-c & -d
\end{array}\right) & =\left(\begin{array}{ll}
b & a \\
d & c
\end{array}\right) \tag{1}
\end{align*}
$$

That is, $a=b$ and $c=-d$. Furthermore

$$
U U^{\dagger}=1 \Rightarrow\left(\begin{array}{cc}
a & a \\
c & -c
\end{array}\right)\left(\begin{array}{cc}
a^{*} & c^{*} \\
a^{*} & -c^{*}
\end{array}\right)=\left(\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right)
$$

which further implies that $|a|^{2}=\frac{1}{2}$ and $|c|^{2}=\frac{1}{2}$. Taking the positive sign implies

$$
U=\frac{1}{\sqrt{2}}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)
$$

We can check that this is a valid solution by showing that

$$
\begin{aligned}
\gamma_{D}^{i} & =U \gamma_{W}^{i} U^{\dagger} \\
\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right) & =\frac{1}{2}\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right)\left(\begin{array}{cc}
0 & -\sigma_{i} \\
\sigma_{i} & 0
\end{array}\right)\left(\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right) \\
& =\left(\begin{array}{cc}
0 & \sigma_{i} \\
-\sigma_{i} & 0
\end{array}\right)
\end{aligned}
$$

Question 10

a) Through a simple application of the Dirac equation, we have

$$
s . p=\frac{1}{2 m} \bar{u}(p, \lambda) \not p \gamma_{5} u(p, \lambda)=\frac{1}{2} \bar{u}(p, \lambda) \gamma_{5} u(p, \lambda)
$$

or, alternatively,

$$
s . p=\frac{1}{2 m} \bar{u}(p, \lambda) \gamma_{5}(-\not p) u(p, \lambda)=-\frac{1}{2} \bar{u}(p, \lambda) \gamma_{5} u(p, \lambda) .
$$

Thus s.p $=0$.
b) For a particle at rest, where we have $u(p, \lambda)=\sqrt{2 m}\binom{1}{0} \chi_{\lambda}, p^{\mu}=(m, 0,0,0)$ and $s . p=0$ we get

$$
s_{0}=0
$$

and

$$
\begin{aligned}
\vec{s} & =\frac{1}{2 m} \bar{u}(0, \lambda) \gamma_{i} \gamma_{5} u(0, \lambda) \\
& =\chi_{\lambda}^{\dagger}(1,0)\left(\begin{array}{cc}
0 & \vec{\sigma} \\
\vec{\sigma} & 0
\end{array}\right)\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\binom{1}{0} \chi_{\lambda}=\chi_{\lambda}^{\dagger} \vec{\sigma} \chi_{\lambda} .
\end{aligned}
$$

Thus $s_{1}=s_{2}=0$ and

$$
s_{3}=\left\{\begin{array}{lll}
1 & \text { for } & \chi_{+} \\
-1 & \text { for } & \chi_{-}
\end{array}\right.
$$

This means \mathbf{s} is in the direction of the spin. In this simple frame we have

$$
s^{\mu}=(0,0,0, \pm 1), \quad s^{2}=-1
$$

c) The spin vector

$$
s_{\mu}(p, \lambda)=\frac{1}{2 m} \bar{u}(p, \lambda) \gamma_{\mu} \gamma_{5} u(p, \lambda)
$$

transforms as a four-vector under Lorentz transformations. Thus $s^{2}=s^{\mu} s_{\mu}$ is a Lorentz scalar and $s^{2}=-1$ in all frames.
d) Since $\vec{\eta}$ and \vec{p} are the only vectors in the problem, we can write

$$
\vec{s}=a \vec{\eta}+b \vec{p}, \quad a \text { and } b \text { are constants. }
$$

Since we are given $\vec{s}=\vec{\eta}$ when the particle is at rest $\vec{p}=0$, we mut have $a=1$. From $s . p=0$, we get

$$
s_{0}=\frac{1}{E}(\vec{\eta}+b \vec{p}) \cdot \vec{p}=\frac{1}{E}\left(\vec{\eta} \cdot \vec{p}+b p^{2}\right)
$$

and the condition $s^{2}=-1$ can now be written as

$$
s_{0}^{2}-\vec{s}^{2}=s_{0}^{2}-(\vec{\eta}+b \vec{p})^{2}=-1
$$

which leads to

$$
\frac{1}{E^{2}}(\vec{\eta}+b \vec{p})^{2}=(\vec{\eta}+b \vec{p})^{2}-1
$$

or

$$
b^{2}\left(E^{2}-m^{2}\right) m^{2}+2 b(\vec{\eta} \cdot \vec{p}) m^{2}-(\vec{\eta} \cdot \vec{p})^{2}=0
$$

or

$$
[m(E-m) b+(\vec{\eta} \cdot \vec{p})][m(E-m) b-(\vec{\eta} \cdot \vec{p})]=0
$$

This gives the solution

$$
b=\frac{(\vec{\eta} \cdot \vec{p})}{m(E+m)}
$$

(The other solution does not go to zero as $\vec{p} \rightarrow 0$.) Thus we have

$$
\vec{s}=\vec{\eta}+\frac{\vec{p}(\vec{\eta} \cdot \vec{p})}{m(E+m)}
$$

