
Physics Honours: Standard Model

Tutorial Sheet 5

Question 1

Calculate the cross-section of the process ν̄ e→ ν̄ e and check that if we neglect the electron mass s� m2:

σ(ν̄ e→ ν̄ e) =
1

3
σ(ν e→ ν e) .

What is the reason for the factor 1/3 between the two cross-sections?

Question 2

Calculate the matrices Ti from infinitesimal O(3) rotations:

φj → (δjk + εijkθ ni)φk = (1 + iθ Ti ni)jk φk .

Question 3

The form of an SU(2) element in the adjoint representation (eg, a pion triplet) is given by

e−i
~θ·~L where (Li)jk = −iεijk i, j, k = 1, 2, 3

These should be 3× 3 rotation matrices. Show explicitly that this is the case for a rotation about the ẑ axis.
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Question 4

Consider a complex scalar field φi in the vector representation of SU(n), which transforms as follows under
infinitesimal transformations of SU(n)

φi → φi + iεjiφj

φi → φi − iεikφk

with φ∗i = φi. Find an expression which is invariant under SU(n) transformations and construct a renormalisable
scalar potential for a general theory in 4-dimensions.

Choose a value for the vacuum of the scalar field as

〈0|φ|0〉 =


0
0
...
0
v


and consider the translation of this minimum of the field to study the properties of the components of the scalar
field. How many Goldstone bosons remain massless in the spectrum of the theory? What is the residual group
invariance of the theory?

Doing the same exercise with two complex scalar fields φ1i and φ2i in the vector representation of SU(n), where
they transform in the same way that φi previously did. Build the scalar potential and do not forget to also
consider the terms which mix the two fields.

Select vacuum expectation values

〈0|φ1|0〉 =


0
0
...
0
v1

 〈0|φ2|0〉 =


0
0
...
v2
v3


and study the symmetry breaking.
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Answers

Question 1

The matrix element is calculated in the following way

� iM = −iGF√
2

[v̄(p′)γµ(1− γ5)u(k)] [ū(k′)γµ(1− γ5)v(p)]

where the result is obtained similarly to that of νe e→ νe e. The differential cross-section is:

dσ

dΩ
=
G2
F

4π2

(u−m2)2

s
.

To obtain the total cross-section simply integrate over the angles, u ' −s(1− x):

σ(ν̄ e→ ν̄ e) =
G2
F

3π
(s−m2)

(
1− m6

s3

)
.

In the limit s� m2

σ(ν̄ e→ ν̄ e) ' G2
F

3π
s .

The factor 1/3 is due to the neutrino helicity. Suppose we take the z-axis along the direction of the incident
particles (for example, with a positive sign in the direction of the momentum of the incoming electron). In
νe e→ νe e, the initial state is in a spin state Jz = 0 because both incoming particles have a left-handed helicity
(and momentum in an opposite direction). There is no restriction on the direction of the outgoing particles from
the elastic collision, where in terms of conservation of total spin.

entering : Jz = 0 exiting (θ = π) : Jz = 0

e
⇐−→ ⇒←−νe e

⇒←− ⇐−→ νe

In particular the incoming particles can bounce straight back after the collision (θ = π). However, in ν̄e e→ ν̄e e
the anti–neutrino is a particle of right-handed helicity

entering : Jz = −1 exiting (θ = π) : Jz = +1

e
⇐−→ ⇐←−ν̄e e

⇒←− ⇒−→ ν̄e

The total spin of the initial system is Jz = −1 and for θ = π the final state of total spin Jz = +1 is forbidden by
conservation of angular momentum.

Question 2

It suffices to note that
(Ti)jk = −iεijk

and to write the matrices

T1 = −i

 0 0 0
0 0 1
0 −1 0

 , T2 = −i

 0 0 −1
0 0 0
1 0 0

 , T3 = −i

 0 1 0
−1 0 0
0 0 0

 .
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Question 3

(L3)jk = −iε3jk where the only non-vanishing entries are ε312 = −ε321 = 1

⇒ L3 =

 0 −i 0
i 0 0
0 0 0

 Note : L2
3 =

 1 0 0
0 1 0
0 0 0



Therefore e−iθ3L3 =
∑
n even

(−iθ3)2

n

 1 0 0
0 1 0
0 0 0

+

 0 0 0
0 0 0
0 0 1

+
∑
n odd

(−iθ3)2

n

 0 −i 0
i 0 0
0 0 0


=

 cos θ3 0 0
0 cos θ3 0
0 0 1

+

 0 −i(−i) sin θ3 0
(−i)i sin θ3 0 0

0 0 0


=

 cos θ3 − sin θ3 0
sin θ3 cos θ3 0

0 0 1


Question 4

An expression invariant under the transformations of SU(n) is given by the scalar product in the complex vector
space

φiφ
i → (φi + iεjiφj) (φi − iεikφk) = φiφ

i .

The renormalisable invariant potential can be constructed from this invariant combination

V (φ) = µ2φiφ
i +

λ

2

(
φiφ

i
)2

.

For µ2 < 0 the minimum potential is given by

φiφ
i =

√
−µ2

λ
≡ v .

The value in the vacuum for the scalar field is chosen in the direction n of the potential

〈0|φi|0〉 = δin v

as indicated by the exercise. The symmetry is broken as follows

SU(n)→ SU(n− 1) .

The number of Goldstone bosons is given by the number of generators broken by the theory which is in turn given
by the difference between the number of generators of SU(n), n2 − 1 and SU(n− 1), [(n− 1)2 − 1];

(n2 − 1)− [(n− 1)2 − 1] = 2n− 1 .

To study in more detail the symmetry breaking we can place at least one translation field

φi = +δin v

in the theory and write the potential in terms of the new fields. The quadratic part of the potential gives mass
terms

µ2 (φ′iφ
′i) +

λ

2

[
v2(φn + φn)2 + 2v2(φ′iφ

′i)
]

= −µ
2

2
(φn + φn)2 .

The fields φi are complex (two degrees of freedom for each field) and φi = φ∗i . Only the real part of φn has mass.
The other 2n− 1 fields are the massless Goldstone bosons.

With two multiplets of scalar complex fields we have four invariant combinations

φ1iφ
1i , φ2iφ

2i , φ1iφ
2i , φ2iφ

1i
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from which to build the invariant potential. The pattern of symmetry breaking is as follows

SU(n)→ SU(n− 2)

with
(n2 − 1)− [(n− 2)2 − 1] = 4n− 4

Goldstone bosons.
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