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Abstract. In this research, we are working with a formalism for quantum measurements that
takes special relativity into account. The ultimate goal is to modify this framework to work
with more general space-times rather than just Minkowski space-time and determine how the
metric would affect quantum entanglement by doing a calculation of Bell’s Theorem in curved
space-time. As a first step in that direction, in this paper, we calculate the case for quantum
measurements along an accelerated world line by solving the Schwinger-Tomonaga equation.

1. Introduction
Most of modern physics can be described either within the framework of general relativity
or within the framework of quantum mechanics. General relativity describes one of the four
fundamental forces, gravitation, as a warpage of space-time whereas the other three, namely
the electromagnetic, the strong and weak nuclear forces can be adequately described within
the framework of quantum mechanics. However, combining general relativity with quantum
mechanics in order to formulate a theory of quantum gravity has proven difficult. The ultimate
goal of the current work is to modify a framework of relativistic quantum mechanics, though not
full quantum field theory, such that it includes metrics other than the Minkowski metric as the
space-time background. This relativistic framework was formulated by Breuer and Petruccione
[1] [2]. The goal is also to determine what the effect of the space-time background, if any, is on
the measurements of entangled particles.

This paper summarises the framework, both non-relativistic and relativistic. In the non-
relativistic case, the framework is a statistical multi-particle formalism of quantum mechanics
which is formulated in terms of probabilities and allows for interactions between different
quantum particles. In the relativistic case, we work with the Schwinger-Tomonaga equation
instead of the Schröedinger equation which, in this case, is a functional differential equation
and the state-vectors are taken as functionals that take as input, space-like hypersurfaces in
space-time. The ultimate goal of this research is to extend this special relativistic framework to
work with curved space-time backgrounds and then find out what, if any, effect the metric itself
has on the phenomenon of quantum entanglement. That means to work with more generalised
space-time backgrounds rather than just Minkowski space-time.

2. Quantum Measurements
In an ideal measurement in quantum mechanics, if a property B with corresponding projection
operator E(B) is measured on a quantum statistical ensemble E described by density matrix ρ,
then after the measurement, we find that the density matrix ρ′ which describes the ensemble E ′
that consists of the systems for which the property B is found to be true is given by



ρ′ =
E(B)ρE(B)

tr{E(B)ρE(B)}
, (1)

where the projection operator E(B) is defined in terms of the spectral family of R̂ =
∫∞
−∞ rdEr

by PR(B) = 〈ψ |E(B)|ψ〉 (see [1], pp 59-62). Equation (1) is called the von Neumann-Lüders
projection postulate [3] [4]. The above describes the ideal measurement of the projection E(B)

derived from the spectral family of R̂ but in practice one can only measure an approximation
that involves the finite resolution of the detector. If we consider a measurement scheme which
yields a setM of possible outcomes m ∈M, then the von Neumann-Lüders projection postulate
(1) can be generalised as follows:

(i) The measurement outcome m represents a classical random number with probability
distribution

P (m) = tr{Fmρ}, (2)

where Fm is a positive operator, called the effect, which satisfies the normalisation condition∑
m∈M

Fm = I, (3)

such that the probability P (m) is also normalised as∑
m∈M

P (m) = 1. (4)

(ii) In the case of a selective measurement, the sub-ensemble of the systems for which the
outcome m has been found to be described by the density matrix

ρ′m = P (m)−1Φm(ρ), (5)

where Φm = Φm(ρ) is a positive super-operator, called an operation, and it maps positive
operators to positive operators. We also assume that the operation Φm obeys the condition

trΦm(ρ) = tr{Fmρ}. (6)

Equation (6) together with equation (2) yields the normalisation

trρ′m = P (m)−1trΦm(ρ) = 1. (7)

(iii) The density matrix for the corresponding non-selective measurement is given by

ρ′ =
∑
m∈M

P (m)ρ′m =
∑
m∈M

Φm(ρ), (8)

which is normalised according to equations (6) and (3) as

trρ′ =
∑
m∈M

trΦm(ρ) =
∑
m∈M

tr{Fmρ} = trρ = 1. (9)

An important measurement scheme which can be treated within the framework of the
generalised theory of quantum measurements above is the concept of an indirect measurement.
Instead of directly measuring the system, in an indirect measurement, we perform the
measurement on what we will call a quantum probe that has interacted with the system at some
point. The aim of the indirect measurement scheme we’re going to describe here is to obtain



information on the state of the object that we want to measure by performing measurements on
the probe ([1], pp 96). This indirect measurement scheme can be considered to be consisting of
three elements. The three elements are the quantum system to be measured, called the quantum
object and has a Hilbert space HO, the quantum probe with Hilbert space HP and a classical
apparatus by which a measurement is performed on the quantum probe following it’s interaction
with the quantum object. Thus for an ideal measurement, we have three requirements. The first
requirement is that prior to the interaction, and at time t = 0, the probe is prepared in a well
defined quantum state ρP while the quantum object is in a state ρO. The second requirement is
that the the measurement takes place after the interaction is over. So, the interaction between
the probe and object may start at time t = 0 and end at time t = τ > 0 but the measurement may
only take place after the interaction has ended. The third requirement is that the measurement
on the probe by the classical apparatus can be described as an ideal measurement by the von
Neumann-Lüders projection postulate described above.

At the initial time t = 0, the density matrix of the combined system consisting of both
probe and object is given by the tensor product ρO ⊗ ρP in the total Hilbert space given by
H = HO ⊗HP . The Hamiltonian of the total system is given by

H(t) = HO +HP +HI(t), (10)

where HO and HP , describe the free evolution of the object and probe respectively. The
HI(t) term describes the evolution due to the interaction between the object and the probe.
Outside the interaction time interval, [0, τ ], the term HI(t) vanishes. The time evolution over
this time interval according to the Schröedinger equation

i
d

dt
|ψ(t)〉 = H(t) |ψ(t)〉 , (11)

can be described by a unitary operator called the time-evolution operator. It is given by

U ≡ U(τ, 0) = T← exp

[
−i
∫ τ

0
dtH(t)

]
, (12)

where T← is the chronological time-ordering operator that order the products of time
dependent operators from right to left, in the direction of the arrow with earlier times on the
right and the later times on the left, and we have used units such that ~ = 1. If we assume
ρ(0) = ρO ⊗ ρP to be the initial density matrix, then in terms of the time-evolution operator,
the density matrix at time τ is given by

ρ(τ) = U(ρO ⊗ ρP )U †. (13)

If we now assume that at time τ , the classical apparatus measures a probe observable
R̂ =

∑
m rm |ϕm〉 〈ϕm|, then we can obtain the indirect measurement by applying the von

Neumann-Lüders projection postulate to the measurement of the probe and then by introducing
the spectral decomposition of the density matrix of the probe, ρP =

∑
k pk |φk〉 〈φk|, we can

derive a measurement operation on the quantum object of the form ([1], pp 97-99)

Φm(ρO) =
∑
k

ΩmkρOΩ†mk, (14)

where Ωmk =
√
pk 〈ϕm | U | φk〉. When using these operators, the effect is given by

Fm =
∑

k Ω†mkΩmk and so both the operaation and effect has the form of the representation
theorem (see equations 2.157 and 2.158 on page 89 of Breuer and Petruccione [1], pp 97-99).



3. Relativistic Quantum Mechanics
In the relativistic framework, everything is re-formulated in terms of four-vectors with a
Minkowski background. Here the four-vector xµ = (x0, ~x) represents the space-time coordinates
of an event x in Minkowski space-time and we use the symbol ηµν to represent the Minkowski
metric. The Interaction picture representation of the Schröedinger equation ([1], pp 112-115)
is used with the Interaction Hamiltonian defined as HI =

∫
H(t, ~x)d3x, where H(t, ~x) is the

Hamiltonian density. In a given fixed coordinate system, the vector |Ψ(t)〉 gives the state of a
quantum mechanical system at each time x0 = t and so allows the evaluation of expectation
values for all observables which are localised on the hypersurface x0 = t = constant in Minkowski
space-time. In order to get a Lorentz invariant generalisation of this concept, consider a state
vector associated with a three-dimensional space-like hypersurface σ which is defined as a
manifold in Minkowski space that extends to infinity in all directions. Consider further that
at each point x ∈ σ on the hypersurface, there exists a unit, timelike normal vector nµ(x)
satisfying the normalisation nµ(x)nµ(x) = 1, n0(x) > 1. The state vector then becomes a
functional |Ψ〉 = |Ψ(σ)〉 in the space of all such hypersurfaces. The same is true of the density
matrix of the system which is given as the functional ρ = ρ(σ). The generalisation of the
Schröedinger equation in this relativistic framework is thus a functional differential equation
and is given by the Schwinger-Tomonaga equation [5] [6] [7] [8], which is given by

δ |Ψ(σ)〉
δσ(x)

= −iH(x) |Ψ(σ)〉 . (15)

In direct analogy to partial differential equations, the Schwinger-Tomonaga equation is
subject to the integrability condition

δ2ρ(σ)

δσ(x)δσ(y)
− δ2ρ(σ)

δσ(y)δσ(x)
= [[H(x),H(y)] , ρ(σ)] = 0, (16)

where the points x and y are located on the same hyper surface σ. This integrability
condition is a direct consequence of the requirement of the micro-causality of the Hamiltonian
density which states that H(x) and H(y) must commute if x and y are space like separated,
i.e [H(x),H(y)] = 0 for (x − y)2 < 0. This integrability condition insures that the Schwinger-
Tomonaga equation has a unique solution ρ(σ) once one has chosen an appropriate initial density
matrix ρ(σ0) for an initial hypersurface σ0. This solution is normally given as

ρ(σ) = U(σ, σ0)ρ(σ0)U
†(σ, σ0), (17)

where U(σ, σ0) is the generalisation of the unitary time-evolution operator given by

U(σ, σ0) = T← exp

[
−i
∫ σ

σ0

d4xH(x)

]
, (18)

where T← is the chronological time-ordering operator, as usual where the time-ordering is
ordered by the hypersurfaces of the foliation from the initial hypersurface σ0 on the right up to
the hypersurface at time τ given by σ(τ) on the left.

A foliation of Minkowski space is defined as a smooth one-parameter family F = {σ(τ)}
of space like hypersurfaces σ(τ) with the property that each space-time point x is located on
precisely one hypersurface of the family. A given foliation σ(τ) gives rise to a corresponding
family of state vectors |Ψ(τ)〉 = |Ψ(σ(τ))〉. The Schwinger-Tomonaga equation (15) can then be
re-formulated as an integral equation

|ψ(τ)〉 = |Ψ(0)〉 − i
∫ σ(τ)

σ0

d4xH(x) |Ψ(σx)〉 , (19)



where we have denoted σx = σ(τ) for exactly one parameter value τ .
The hypersurfaces σ(τ) of a foliation can be defined with the help of an implicit equation of the

form f(x, τ) = 0, where f(x, τ) is a smooth scalar function. With an appropriate normalisation

of f , the unit normal vector can be assumed to be given by nµ(x) = ∂f(x,τ)
∂xµ . Consider two

infinitesimally separated hypersurfaces corresponding to two parameter values τ and τ + dτ .
Then d |Ψ(τ)〉 = |Ψ(τ + dτ)〉 − |Ψ(τ)〉, which according to equation (19) is therefore

d |Ψ(τ)〉 = −i
∫ σ(τ+dτ)

σ(τ)
d4xH(x) |Ψ(τ)〉 . (20)

The four-volume element d4x can be re-written as d4x = dσ(x)
∣∣∣n0 ∂x0∂τ ∣∣∣ dτ = dσ(x)

∣∣∣∂f∂τ ∣∣∣ dτ .

Substituting this into equation (20) and dividing both sides by dτ , we get

d

dτ
|Ψ(τ)〉 = −i

∫
σ(τ)

dσ(x)

∣∣∣∣∂f∂τ
∣∣∣∣H(x) |Ψ(τ)〉 ≡ −iH(τ) |Ψ(τ)〉 . (21)

For a particular example, let’s consider an observer O moving along a straight world line
y(τ) = nτ with constant velocity ~v such that n = dy

dτ = (γ, γ~v), where γ = 1√
1−|~v|2

. Here we can

see that n is the four-velocity of O. Here, the parameter τ is the proper time of the observer
O, or the time measured by a clock carried along the world line y(τ) by O. At each fixed value
of τ , the time axis in the rest frame of observer O is in the direction of the unit vector n while
the instantaneous three-space at τ is given by the flat, spacelike hypersurface σ(τ) which is
orthogonal to n and contains the point y(τ). So, the function f is then defined as

f(x, τ) ≡ n(x− y(τ)) ≡ nx− τ = 0. (22)

We see that the hypersurface σ(τ) consists of all the space-time points x with which the

observer O assigns the same time coordinate τ . Since
∣∣∣∂f∂τ ∣∣∣ = |−1| = 1, equation (21) then

becomes

d

dτ
|Ψ(τ)〉 = −i

∫
σ(τ)

dσ(x)H(x) |Ψ(τ)〉 ≡ −iH(τ) |Ψ(τ)〉 . (23)

In the coordinate system where the normal vector n coincides with the time axis, i.e
nµ = (1, 0, 0, 0), then equation (23) becomes identical to the Schröedinger equation.

On the other hand, the term
∣∣∣∂f∂τ ∣∣∣ 6= 1 in general, equation (23) only applies if the observer

O travels along a straight world-line with constant four-velocity n.
As discussed in the Abstract, before we extend the formalism to the case of general space-

times, the first step is to calculate the Schwinger-Tomonaga equation for uniformly accelerated
world lines. If we allow for acceleration such that n(τ) varies in time, then we have to include

a different value for
∣∣∣∂f∂τ ∣∣∣ in general. To take another example, let’s consider the case of the

observer O accelerating uniformly with respect to an observer O′. In other words, the reference
frame of the observer O is such that there is a constant non-zero proper acceleration ~a as felt by
observer O. If we again assume that the unit normal vector n(τ) is the four-velocity, then the

four-acceleration is given by aµ(τ) = dnµ(τ)
dτ . Now, since the four-velocity is always normalised as

nµ(τ)nµ(τ) = ηµνn
µ(τ)nν(τ) = 1, we also have d

dτ (nµ(τ)nµ(τ)) = 2nµ(τ)aµ(τ) = 0. Therefore
any four-acceleration is orthogonal to the corresponding four-velocity at a given proper time
τ , i.e. aµ(τ)nµ(τ) = 0 at all times τ . In the observer frame O, the unit normal vector n
coincides with the time axis. Therefore the four-velocity of O is nµ = (1, 0, 0, 0) when measured
with respect to it’s own reference frame, while the four-acceleration is given by aµ = (0,~a).



Noting that the magnitude of the four-acceleration as measured in the observer frame O is
|(0,~a)| = |~a| = a, the only way to make sure that the acceleration of O remains uniform is to
ensure that the magnitude of the four-acceleration remains constant at a. Using the fact that
aµ and nµ are orthogonal, we obtain for the four-acceleration,

aµ(τ) = (a sinh(aτ),
a

|~a|
cosh(aτ)~a), (24)

and for the four-velocity,

nµ(τ) = (cosh(aτ), |~a|−1 sinh(aτ)~a), (25)

such that aµaµ = a2(sinh2(aτ) − cosh2(aτ)) = −a2, aµnµ = 0 and nµnµ =
cosh2(aτ) − sinh2(aτ) = 1. The observer therefore follows a hyperbolic world-line y(τ) =
(a−1 sinh(aτ), a−1 |~a|−1 cosh(aτ)~a) and the function f hypersurface is given by f(x, τ) ≡
n(τ)(x − y(τ)) = n(τ)x = 0. Therefore

∣∣∣∂f∂τ ∣∣∣ = |aµ(τ)xµ| and so the Schwinger-Tomonaga

equation (21) for the case of an accelerated world line now becomes

d

dτ
|Ψ(τ)〉 = −i

∫
σ(τ)

dσ(x) |aµ(τ)xµ|H(x) |Ψ(τ)〉 . (26)

4. Conclusion
The main part of this paper provides an overview of a framework for special relativistic quantum
mechanics, although it is not full quantum field theory. It describes a statistical interpretation
of non-relativistic quantum mechanics for multi-particle systems and then proceeds to use
that interpretation to describe a theory of quantum measurement. The framework was then
generalised to a framework for special relativistic quantum mechanics. This framework was
initially formulated by Breuer and Petruccione [1].

The main part of this paper is devoted to the description of non-relativistic measurements.
In addition, we have derived the relativistic evolution equation for a closed quantum system
with respect to a reference frame moving at constant velocity and a reference frame with
uniform acceleration. In future we will describe the projection measurements in a relativistic
setting. Based on this and the description of unitary evolution, one could attempt a relativistic
description of generalised measurements, all of which could be realised as indirect measurements.
We will also try to derive Bell-state measurements within the framework before attempting to
introduce more general metrics into the framework other than the Minkowski metric.
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