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Abstract. A realistic quantum key distribution protocol necessarily runs with finite resources.
This is in contrast to the existing quantum key distribution security proofs which are asymptotic
in the sense that certain parameters are exceedingly large as compared to practical realistic
values. In this paper, we derive bounds on the secret key rates for the B92 protocol (Phys. Rev.
Lett. 68, 3121 (1992)) which includes a preprocessing step. The derivation for finite-size key
is expressed as an optimization problem by using results of the uncertainty relations and the
smooth Rényi entropies.

1. Introduction
Quantum Key Distribution (QKD) provides the only physically secure and proven method for the
transmission of a secret key between two distant parties, Alice and Bob [1, 2]. The goal of QKD
is to guarantee that the possible eavesdropper known as Eve, with access to the communication
channel is unable to obtain useful information about the message [2]. Since the invention of the
BB84 protocol [1] which forms the most studied protocol, various protocols have been invented.
Some of the common protocols are E91 [3], B92 [4] and SARG04 [5]. Moreover, the unconditional
security proofs of these protocols against various attacks have been realized. In addition, various
QKD products ave been realized. The tools for the possible study of unconditional security in
the finite-key regime for all discrete variable protocols are now available in [6, 7]. Many efforts
have been done to improve the bounds on the secret key rates for finite amount of resources
[8, 9, 10, 11, 12]. Recently, a technique of using the uncertainty relations for the smooth
entropies has been realized [13]. This approach has proved to be elegant because instead of
providing bounds for coherent attacks, it provides bounds also for the general kind of attacks.
Moreover, the uncertainty relation has direct applications in quantum cryptography and also
this generalizes the results for the Shannon or von Neumann entropy.

The security bounds for the BB84 and the six-state protocols have been calculated using
the smooth min-entropies in Ref [7, 8]. The secret key rate for the six-state protocol via Rényi
entropies has been presented in Ref [12]. In this paper, we present bounds on the achievable
key length for the B92 protocol [4] which involves a preprocessing step by using the uncertainty
relations [13] and the Rényi entropies [14].

2. The B92 QKD Protocol
The B92 protocol [4] resembles symmetry like the BB84 and the six-state protocol. In contrast
to the BB84 protocol which uses four states, the B92 protocol utilizes two non-orthogonal states.



By encoding in the non-orthogonal states of the quantum system, it makes it neither possible
for the eavesdropper to make an exact copy of the system nor to gain partial information about
the system without disturbing it. Below we describe the steps taken in the execution of the B92
protocol.

State preparation. Alice sends one of the two non-orthogonal states which we denote by |ψ±〉,
to Bob. Bob chooses randomly to measure one of the two von Neumann measurements. The first
measurement projects onto the basis |ψ+〉 which consists of the vectors {|ψ−〉, |ψ̃−〉}, where |ψ̃−〉
is orthogonal to |ψ−〉. The second measurement similarly projects onto the basis |ψ−〉 which
consist of the vectors {|ψ+〉, |ψ̃+〉}, where |ψ̃+〉 is orthogonal to |ψ+〉. Then Bob announces an
acceptance if he gets an outcome which corresponds to |ψ̃±〉, otherwise both parties discard the
values that they recorded.

Sifting and Measurement. Alice records the bit value 0 or 1 if she sends |ψ+〉 or |ψ−〉 and Bob
records 0 or 1 if he obtains |ψ̃−〉 or |ψ̃+〉. Alice sends each quantum state with equal probability
and Bob chooses randomly with equal probability between his two measurements.

Parameter estimation. The role of the parameter estimation step is to minimize the set of
compatible states Γ, given m sample points. Let ΓεPE be a set of states from which a key is
extracted with non-negligible probability where εPE is the failure probability in the parameter
estimation step (i.e., the parameter estimation passes although the raw key does not contain
sufficient secret information). In particular, if the statistics λm are obtained by measuring
m samples of ρAB (i.e., the entangled state shared by Alice and Bob) according to a POVM
measurement with d possible outcomes and λ∞(ρAB) denotes the perfect statistics in the limit
of infinitely measurements then for any state ρAB [6]

Γξ := {ρAB : ||λm − λ∞(ρAB)||1 ≤ ξ}, (1)

where by the Law of Large numbers [7]

ξ :=

√
ln(1/εPE) + 2 ln(m+ 1)

2m
. (2)

Error correction. The error correction step serves the purpose of correcting all the erroneously
received bits and giving an estimate of the error rate. Alice and Bob hold correlated bits strings
denoted as Xn and Y n. The number of bits leaked during the classical communication to an
eavesdropper is given by [6, 8]

LEC = fECnh(Q) + log2(
2

εEC
), (3)

where fEC is a constant larger than 1 (in practice f ≈1.05 - 1.2), h(Q) is the binary Shannon
entropy, Q is the QBER and εEC is the error probability in the error correction step.

Privacy amplification. The objective of this step is to minimize the quantity of correct
information which the eavesdropper may have obtained about Alice’s and Bob’s raw key. Let
Alice (X) and Bob (Y ) hold a perfectly correlated bit string Xn on which Eve (E) might have
some information. Alice chooses at random a function F from a two universal hash functions
and sends a description of F to Bob. Then Alice and Bob compute their keys SA = F(Xn) and

SB = F(X̂n). By using an important result in [15], it has been found that the achievable length



of the secret key rate that can be computed from X by the two universal hash function F can
be expressed as

` = H ε̄
max(X|E)−H ε̄

min(X|Y )− 2 log2(1/ε), (4)

where ε̄ = (ε/8)2 and ε quantifies the security of the final key.

3. Definitions
3.1. Rényi entropies
The Rényi entropies are a family of functions on probability distributions. They quantify the
uncertainty or randomness of a system. The Rényi entropy of order α is defined as [14]

Hα(X) =
1

1− α
log
∑
x∈X

P (x)α, α ∈ (0, 1) ∪ (1,∞), (5)

for which H∞(α→∞), H0(α→ 0) and the Shannon entropy (α→ 1) are defined as limits. For
a finite-dimensional Hilbert space H, we use P(H) to denote the set of positive semi-definite
operators on H. The set of normalized quantum states S(H) := {ρ ∈ P(H) : trρ = 1} and
the set of sub-normalized states S≤(H) := {ρ ∈ P(H) : trρ ≤ 1}. We use indices to denote
multi-partite Hilbert spaces for example, HAB = HA ⊗HB.

Definition 1. Let ρAB ∈ S≤(HAB) and σB ∈ S(HB), then the min-entropy of A conditioned
on B of the state ρAB relative to σB is defined as [7]

Hmin(A|B)ρ|σ := max
σ

sup{λ ∈ R : ρAB ≤ 2−λ1A ⊗ σB}, (6)

where the maximum is taken over the states σB ∈ S(HB). Furthermore, we define

Hmin(A|B)ρ := max
σB∈S(HB)

Hmin(A|B)ρ|σ. (7)

The min-entropy, Hmin(A|B)ρ is finite if and only if supp{ρB} ⊆ supp{σB} and −∞ otherwise.
The max-entropy is its dual with regards to a purification ρABC of ρAB on an auxiliary Hilbert
space HC .

Definition 2. Let ρABC ∈ S≤(HABC) be pure, then the max-entropy of A conditioned on B of
the state ρAB is defined as

Hmax(A|B)ρ := −Hmin(A|C)ρ. (8)

The quantum entropies can be ordered as follows

Hmin(A|B)ρ ≤ H(A|B)ρ ≤ Hmax(A|B)ρ. (9)

In order to define smooth versions, we consider the set of states close to ρ in the following sense.
For ε > 0, we define an ε-ball of states around ρ ∈ S(H) as

Bε(ρ) := {ρ̃ ∈ S≤(H) : C(ρ, ρ̃) ≤ ε}, (10)

where C(ρ, ρ̃) :=
√

1− F 2(ρ, ρ̃) is a distance measure (on normalized states) based on the fidelity
F (ρ, ρ̃) := tr|√ρ

√
ρ̃|. We use this choice of measure because it is invariant under purifications

and is directly related to the trace distance for pure states. Smoothed versions of the min-entropy
are then defined as:

Hε
min(A|B)ρ|σ := max

ρ̃∈Bε(ρAB)
Hmin(A|B)ρ̃|σ,

Hε
min(A|B)ρ := max

ρ̃∈Bε(ρAB)
Hmin(A|B)ρ̃, (11)



and similarly
Hε

max(A|B)ρ := min
ρ̃∈Bε(ρAB)

Hmax(A|B)ρ̃. (12)

The Rényi entropies with α > 1 are close to the smooth min-entropy in the sense that

Hε
min(X) ≥ Hα(X)− 1

α− 1
log

1

ε
, α > 1, (13)

while those with α < 1 are close to the smooth max-entropy.

3.2. Bound on the secure key rate
According to [7], for any ε ≥0, a final key S is said to be ε-secure with respect to an adversary
Eve if the joint state ρSE satisfies

min
ρE

1

2
||ρSE − τS ⊗ ρE ||1 ≤ ε, (14)

where ρSE =
∑

s∈S Ps(s)|s〉〈s| ⊗ ρsE and {|s〉}s∈S is an orthonormal basis of some Hilbert space
Hs. The parameter τS is the completely mixed state on the key space, ρE is the state held by
an eavesdropper, and || · ||1 is the trace distance. The parameter ε, represents the maximum
failure probability in which an adversary may have gained some information on S, or it can be
interpreted as the maximum failure probability in which the extracted key deviates from the
ideal key. The secret key rate in the asymptotic regime is expressed as

lim
N→∞

r = S(X|E)−H(X|Y ), (15)

where S(X|E) and H(X|Y ) are the conditional von Neumann and the Shannon entropies [8].
However, in the non-asymptotic regime this equation becomes invalid as we have a finite number
of bits that Alice sends to Bob. In the non-asymptotic limit, the secret key rate is found to be
[6]

r =
n

N

[
min
σXE∈Γ

H(X|E) +4− LEC

]
+

2

N
log2(2εPA), (16)

where 4 = (2 log2 d + 3)
√

[log2(2/ε̄)]/n. The total security parameter, ε of a QKD scheme
depends on the sum of probabilities of failures of the classical post-processing protocols which
can be written as

ε = ε̄+ εPA + εEC + εPE, (17)

where ε̄ denotes the error in the smooth min-entropy and εPA is the probability of error in the
privacy amplification step.

In order to determine the length `, of ε-secure key bits that can be generated by this protocol
we use the following results on the uncertainty relation [13]. The amount of key that can be
extracted from a string X is given by uncertainty of the adversary about X, measured in terms
of the smooth Rényi entropies. The amount of information B needs to correct his errors, using
optimal error correction is given by his uncertainty about A’s string again measured in terms of
the smooth Rényi entropies. Combining these two results we have [16]

H ε̄
min(X|E) +H ε̄

max(Z|B) ≥ log
1

c
, (18)

where ε̄ ≥ 0 is the smoothing parameter and c quantifies the ‘incompatibility’ between the
measurements Z = Z⊗n and X = X⊗n. It is defined as c = −maxx,z||

√
MX

√
NZ ||2∞, where
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Figure 1. (Color online) Lower bound on the secret key fraction, r, for the finite B92 protocol
as a function of the exchanged quantum signals N for bit errors Q= 0.5%, 2%, 2.5%, 5%. The
maximum failure probability of the protocol is ε = 10−5 and the failure probability of the error
correction procedure is εEC = 10−10.

{MX} and {NZ} are POVM elements for preparing the state corresponding to X and Z basis
respectively [16].

The definitions of the smooth min and max-entropies have been given above. The measure of
uncertainty for Bob’s measurement Hmax can only increase under information processing such
that

H ε̄
max(Z|B) ≤ H ε̄

max(Z|Z′), (19)

where the measurement Z′ = Z ′⊗n is made on Bob’s system [17]. The protocol does not need
to prescribe the actual measurements of Z and Z′. However, based on the observed parameters
we can replace the measurement on X and X′ in this hypothetical protocol by highly correlated
measurements Z and Z′ respectively. This means that the uncertainty in H ε̄

max(Z|Z) is small
and holds for the following bound on the smooth max-entropy

H ε̄
max(Z|Z′) ≤ nh(Q), (20)

where Q is the QBER. This result follows the argument in [16].

3.3. Bound on the achievable key length
Let ρXBE be the state describing Alice’s bit string Xn and Bob’s string Bn as well as Eve’s
quantum information represented by ρEn . Let ε̄, εPA ≥0. If the length of the key is such that

` ≤ max
ε̄,εPA

(
Hmin(X|E)ρXBE − 2 log

1

2ε̄
− 2 log

1

2εPA

)
, (21)

then the protocol is (2ε̄+ εPA)-secure.
By using the data processing inequality [7] and the uncertainty relation in (18) we have

H ε̄
min(X|E′) ≥ H ε̄

min(X|E)− leakEC

≥ nq −H ε̄
max(Z|Z′)− leakEC

≥ nq − (1− 2δ)η + 2δ

2
(ε− (1− ε)h(x))

− nh(Q)− leakEC, (22)



where q = log 1/c is the quality factor and

x =
(1− 5δ)(1− δ)η(1− η)

(δ + (1− 2δ)η)(1− δ)− (1− 5δ)η)
,

where η = (2αβ)2 and δ = 2/3p, (0 < p < 1), where p describes the amount of noise in the
channel. The error rate conditioned on acceptance is given by ε = δ/(1− 2δ)η + 2δ, α ∈ (0, 1√

2
)

and β =
√

1− α2 are complex vectors [18]. By substitution of Equation (22) into Equation (21),
we find that the secret key rate r, varies with the number of signals N , as shown in Figure 1.
Again, if we combine Equation (22) with the proposed bound on the achievable key length in
Equation (21) and also by using the Quantum Leftover Hash Lemma [19] we have

4 ≤ ε̄+
1

2

√
2`−H

ε̄
min(X|E′) ≤ 2ε̄+ εPA, (23)

where E′ summarizes all information Eve learned about X during the protocol including the
classical communication sent by Alice and Bob over the authenticated channel. This equation
shows that one can extract a 4-secret key of length ` from X. This completes the proof for
security bound for the B92 protocol.

4. Conclusion
We have demonstrated how one can use results of the uncertainty relations and smooth Rényi
entropies to derive security bounds for the B92 QKD protocol when a finite number of signals
are used. The results show that a minimum number of approximately 104 − 106 signals are
required in order to extract a reasonable length of secret key in QKD protocols under realistic
scenarios. This minimum number has also been discussed in [6, 8, 9]. Therefore, the uncertainty
relations and the smooth Rényi entropies prove to be a powerful technique for the derivation of
the security bounds in QKD protocols in the finite size-key regime.
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