SAIP2013

Contribution ID: 156

Type: Oral Presentation

Magnetic properties of the (Cr_{100-<i>x</i>}Al_{<i>x</i>})₉₉V<sub>1</sub alloy system

Tuesday, 9 July 2013 14:10 (20 minutes)

Abstract content
 (Max 300 words)

The magnetic phase diagram of the Cr_{100-<i>x</i>}Al_{<i>x</i>} alloy system is unique amongst Cr alloy systems because it exhibits a deep minimum at the triple point concentration <i>x</i>_c \approx 2, where the incommensurate spin-density-wave (SDW) and commensurate SDW phases coexist with the paramagnetic (P) phase [1]. The interesting properties of this system were previously explored by the addition of 5 at.% Mo to form a (Cr_{100-<i>x</i>}Al_{<i>x</i>})₉₅Mo₅Al>sub>4.5% (Signature) (Si alloy system [2]. Antiferromagnetism (AFM) in this system was suppressed to below 4 K in the range 2 $\leq \langle i \rangle x \langle i \rangle \leq 6$ [2]. Mo suppresses AFM in Cr and its alloys through electron hole pair breaking effects due to electron scattering [1]. For comparison, the present study investigates the magnetic properties of the Cr_{100-<i>x</i>}Al_{<i>x</i>} system further through the addition of V. This reduces the AFM in Cr alloys through a mechanism different to that associated with Mo by reducing the electron-to-atom ratio [1]. Electrical resistivity ($\langle i > \rho < /i > \rangle$), Seebeck coefficient ($\langle i > S < /i > \rangle$) and magnetic susceptibility (<i> χ </i>) measurements, as a function of temperature in the range 2 K < <i>T</i> < 390 K, were carried out on the (Cr_{100-<i>x</i>}Al_{<i>x</i>})₉₉V₁ alloy (Sub>V)₁ alloy (Sub>V)₁ alloy (Sub>V)₁ alloy (Sub>V)₁ (Sub>V)<sub>1</sub) (Sub) (Sub>V)<sub>1</sub) (Sub) (Ssystem, with 0 < <i>x</i> < 7. Néel temperatures (<i>T</i>_N) obtained from all these measurements decrease with Al concentration, disappearing near $\langle i \rangle x \langle i \rangle \approx 1.5$, again reappearing for $\langle i \rangle x \langle i \rangle$ > 4.5. $\langle i > \rho < /i > \langle (i > T < /i >)$ and $\langle i > S < /i > \langle (i > T < /i >)$ for samples with $\langle i > x < /i > \ge 6.1$ show smeared anomalies making the determination of <i>T</i>_N difficult. However, these anomalies are sharp in $<i>\chi</i>(<i>T</i>),$ proving that it is an important tool in probing AFM in this system. The present results show that the addition of just 1 at.% V to the Cr_{100-<i>x</i>}Al_{<i>x</i>} alloy system suppresses AFM in the concentration range $1.5 \le \langle i \rangle x \langle i \rangle \le 4.5$. This behaviour is similar to that of the (Cr_{100-<i>x</i>}Al_{<i>x</i>})₉₅Mo₅ alloy system [2].

[1] Fawcett E, Alberts H L, Galkin V Yu, Noakes D R and Yakhmi J V 1994 Rev Mod. Phys. 66 25 [2] Smit P and Alberts H L 1986 J. Phys. F: 16 L191

Apply to be
 considered for a student
 award (Yes / No)?

Yes

Level for award
 (Hons, MSc,
 PhD)?

PhD

Main supervisor (name and email)
and his / her institution

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Primary author: Mr MUCHONO, Blessed (University of Johannesburg)

Co-authors: Prof. PRINSLOO, Aletta (University of Johannesburg); Dr SHEPPARD, Charles (University of Johannesburg)

Presenter: Mr MUCHONO, Blessed (University of Johannesburg)

Session Classification: DCMPM2

Track Classification: Track A - Division for Condensed Matter Physics and Materials