SAIP2013

Contribution ID: 251

Type: Oral Presentation

Fine structure of the Isoscalar Giant Quadrupole Resonance using proton inelastic scattering at 200 MeV in spherical to highly deformed neodymium isotopes

Wednesday, 10 July 2013 14:10 (20 minutes)

Abstract content
 (Max 300 words)

Proton inelastic scattering measurements have been performed at iThemba Laboratory for Accelerator Based Sciences, using the state-of-the-art K600 Magnetic Spectrometer. This is one of the only two facilities in the world with a unique capability of high energy-resolution measurements at medium energies. The 200 MeV proton beams were delivered by the Separated Sector Cyclotron (SSC). As a result, fine structure has been observed in the region of the Isoscalar Giant Quadrupole Resonance (ISGQR) in five stable even-even neodymium (from spherical to highly deformed) target nuclei, namely, ¹⁴²Nd, ¹⁴⁴Nd, ¹⁴⁶Nd, ¹⁴⁸Nd and ¹⁵⁰Nd. Nuclei with mass number <i>A</i> ≈ 150 and neutron number <i>N</i> ≈ 90 are particularly of special interest since they occupy that region of the nuclide chart wherein the onset of permanent prolate deformation occurs. The stable even-even neodymium (<i>Z</i> = 60) isotopes have been chosen in the present study in order to investigate the influence of the onset of deformation on the excitation energy spectra in the ISGQR region ($9 \le \langle i > E < /i > \langle sub > x < /sub > \leq 15$ MeV), since they extend from the semi-magic <i>N</i> = 82 nucleus (¹⁴²Nd) to the permanently deformed <i>N</i> = 90 (¹⁵⁰Nd) nucleus. In order to enhance the ISGQR in the excitation energy spectra measured, a Discrete Wavelet Transform (DWT) background subtraction was carried out. A comparison of the resonance widths extracted shows a systematic broadening of the ISGQR, moving from spherical to highly deformed nuclei as has already been observed for the Isovector Giant Dipole Resonance (IVGDR) excited by &gamma-capture. Energy scales were extracted for the resonance region using the Continuous Wavelet Transform (CWT) technique. Another important further step which has been conducted is the extraction of 2⁺ nuclear level densities from the fine structure in the region of the ISGQR. Experimental details, data extraction and analysis techniques, together with preliminary results will be presented.

Apply to be
 considered for a student
 award (Yes / No)?

No

Level for award
 (Hons, MSc,
 PhD)?

PhD

Main supervisor (name and email)
and his / her institution

Prof. John Carter John.Carter@wits.ac.za University of the Witwatersrand

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

No

Primary author: Mr KUREBA, Chamunorwa Oscar (Wits)

Co-authors: Mr KRUGMANN, A (Institut für Kernphysik, Technische Universität Darmstadt); Prof. RICHTER, A (Institut für Kernphysik, Technische Universität Darmstadt); Prof. TAMII, A (Research Center for Nuclear Physics, Osaka University); Ms HEILMAN, A. M. (Institut für Kernphysik, Technische Universität Darmstadt); Dr FOURIE, D. T. (iThemba LABS); Prof. SIDERAS-HADDAD, E (Wits); Dr BUTHELEZI, E. Z. (iThemba LABS); Dr SMIT, F. D. (iThemba LABS, SU); Dr STEYN, G. F. (iThemba LABS); Prof. COOPER, G. R. J (Wits); Dr USMAN, I. T. (Wits); Prof. CARTER, J (Wits); Dr MABIALA, J (SU); Mr SWARTZ, J. A. (iThemba LABS, SU); Dr CONRADIE, J. L. (iThemba LABS); Mr MIRA, J. P. (iThemba LABS); Mr JINGO, M (Wits); Prof. PAPKA, P (SU); Prof. VON NEUMANN-COSEL, P (Institut für Kernphysik, Technische Universität Darmstadt); Dr NEVELING, R (iThemba LABS); Dr NEWMAN, R. T. (SU); Prof. FEARICK, R. W. (UCT); Mr MURRAY, S. H. T. (iThemba LABS); Dr FÖRTSCH, S. V. (iThemba LABS)

Presenter: Dr USMAN, I. T. (Wits)

Session Classification: NPRP

Track Classification: Track B - Nuclear, Particle and Radiation Physics