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Abstract. For testing the existence of superposition of macroscopically distinct quantum
states, Leggett and Garg [Leggett A J, Garg A 1985 Phys. Rev. Lett. 54 857], proposed
an inequality based on the assumptions of ‘macroscopic realism’, ‘noninvasive measurabilty’
and ‘induction’. These assumptions in a slightly different form have been used to derive a
temporal version of Bell’s inequality [Brukner C, Taylor S, Cheung S, Vedral V (e-print quant-
ph/0402127)]. This inequality is violated in Quantum Mechanics and thus establishes non-
locality of quantum correlations in time. We compare various nonlocality arguments in this
temporal scenario.

1. Introduction
Quantum mechanics is a mathematical theory for describing the physical world but it is prob-
abilistic in nature. This may not be surprising, however. What is surprising is that (according
to the Copenhagen interpretation) this probability is not the probability of some dynamical
variable having a particular value in some state, rather it represents the probability of finding
a particular value of the variable if that dynamical variable is measured. So what about the
variables when the system is not subjected to any measurement; quantum mechanics remains
mute in this regard. This interpretation generated numerous debates among physicists which
resulted into the development of Hidden Variable Theories. The aim of hidden variable theo-
ries is to provide a formalism which, while being empirically equivalent to quantum mechanics,
does not contain the intrinsic indeterminacy of quantum mechanics i.e., in this theory quantum
probabilities become epistemic, they arise due to our ignorance about hidden variables whose
knowledge would give us the precise value of every observable.

In a much celebrated paper [1], J.S. Bell showed that this realistic viewpoint cannot explain
some correlations predicted by quantum mechanics unless it assumes some signalling between
the correlated events. Such correlations are called nonlocal. Bell showed this by means of an
inequality, known as Bell’s inequality [1]. Later, Hardy [2] gave an argument which also reveals
the nonlocal character of Quantum Mechanics, but his argument, unlike Bell’s argument, does
not use inequalities involving expectation values. Afterwards, Cabello [3] introduced another
logical structure to prove Bell’s theorem, namely predictions of quantum mechanics are not
compatible with the notion of local-realism, without inequality. Although, Cabello’s logical
structure was originally proposed for establishing nonlocality for three particle states, it was
later exploited to establish nonlocality for a class of two-qubit mixed entangled state [4]. It is



noteworthy here that in contrast, there is no two-qubit mixed state which shows Hardy type
nonlocality [5] whereas almost all pure entangled states of two-qubits do so (maximally entangled
states are the exception) [6, 7]. Likewise, for almost all two-qubit pure entangled states other
than maximally entangled ones, Cabello’s nonlocality argument works and for these states, the
maximum probability of success of this argument is 0.11 [8]. This is interesting, as for two-qubit
states, the maximum success probability of Hardy’s argument is known to be 0.09 [6, 9].

Although quantum theory predicts the existence of nonlocal correlations but these
correlations cannot be exploited to communicate with a speed greater than that of the light
in vacuum. But quantum theory is not the only nonlocal theory consistent with the relativistic
causality [10]. Theories which predict nonlocal correlations and hence permit violation of Bells
inequality but are constrained with the no signalling condition are called Generalized Nonlocal
Theory (GNLT). Success probabilities of Hardy’s and Cabello type arguments have also been
compared in the framework of GNLT [11]. It has been shown there that for two two-level
systems, success probabilities of both these arguments converge to a common maximum, 0.5.

Recently, the principle of nonviolation of information causality [12] has been proposed as
one of the foundational principles of nature. Hardy and Cabello arguments have also been
studied in the context of the above principle. Once again for two two-level systems, the success
probabilities of these arguments converge to a common maximum, 0.20717 [13].

For testing the existence of superposition of macroscopically distinct quantum states, Leggett
and Garg [14], proposed an inequality based on the assumptions of macroscopic realism,
noninvasive measurabilty and induction. These assumptions in a slightly different form have
been used to derive a temporal version of Bell’s inequalities [15]. They are the constraints on
certain combinations of temporal correlations for measurements of a single quantum system,
which are performed at different times. These inequalities are violated in Quantum Mechanics
and thereby give rise to the notion of entanglement in time. Recently, Hardy’s argument has been
studied in the temporal Bell-CHSH scenario [16]. It has been shown there that the maximum
probability of success of this argument can assume up to 25%. We describe Cabello’s argument
in this temporal scenario as the probability of its success in revealing the time-nonlocal features
of quantum states can be more than that of the Hardy’s argument.

2. Temporal Bell-CHSH inequality
The temporal Bell inequalities are derived from the following two assumptions [15]

(i) Realism: The measurement results are determined by hidden properties, which the particles
carry prior to and independent of observation, and

(ii) Locality in time: The result of a measurement performed at time t2 is independent of any
measurement performed at some earlier or later time t1.

These assumptions are similar to the assumptions made by Leggett and Garg [14] in the context
of testing superpositions of macroscopically distinct quantum states. But here these assumptions
are more general in the sense that they do not necessarily demand the physical system under
consideration to be macroscopic [17].

In the framework of a probabilistic theory, consider a physical system on which one of the
two observers, Alice conducts the experiments of measuring any one (chosen at random) of
the two {−1,+1}-valued random variables a1 and a2 whereas another observer Bob can run
the experiments of measuring any one (chosen at random) of the two {−1,+1}-valued random
variables b1 and b2 at a later time (this we call the temporal CHSH scenario).

Consider now the quantity B defined as:

B = a1[b1 + b2] + a2[b1 − b2].



In a realistic theory the value of the quantity B cannot be other than 2 or −2 if the theory is also
local in time. After averaging this expression over many runs of the sequence of measurements,
one obtains

− 2 ≤ 〈B〉 ≤ 2 (1)

i.e.
|〈a1b1〉+ 〈a1b2〉+ 〈a2b1〉 − 〈a2b2〉| ≤ 2. (2)

This we call temporal Bell-CHSH inequality in analogy to the spatial one. As shown in [15], this
inequality is violated in quantum mechanics if the system under consideration is a single spin-1/2
particle and observables a1, a2, b1 and b2 are the spin observables in directions given by the unit
vectors ã1, ã2, b̃1 and b̃2 respectively where the spin directions are related as ã1 = 1√

2
(b̃1 + b̃2)

and ã2 = 1√
2
(b̃1 − b̃2). In fact, for these observable settings the violation is maximum and it is

equal to 2
√
2. This may be called the temporal Tsirelson’s bound [15, 18].

3. Temporal version of Hardy’s argument
Consider the following four conditions in the above mentioned temporal CHSH scenario:

Prob(a1 = +1, b1 = +1) = 0,
Prob(a2 = +1, b1 = −1) = 0,
Prob(a1 = −1, b2 = +1) = 0,
Prob(a2 = +1, b2 = +1) = q

 (with q > 0). (3)

The above four conditions together form the basis of Hardy’s nonlocality argument. The
last equation, for example, states that if Alice measures a2 and Bob measures b2 at some later
time, then the probability that both will get +1 as their measurement results is q. These four
conditions cannot be fulfilled simultaneously in a theory which is realistic and time-local [16, 19].

On the contrary, a qubit prepared in the state |x+〉 with the measurement setting a1 =
−σx, a2 = σy, b1 = σy, b2 = −σx satisfies all these conditions with Prob(a2 = 1, b2 = 1) = 0.25
which indeed is its optimal value [16]. Thus the temporal version of Hardy’s proof is considerably
stronger than its spatial analog where Prob(a2 = 1, b2 = 1) can be no greater than 0.09. This
fact has been recently verified in an experiment [19].

4. Cabello’s argument in the temporal scenario
Cabello’s conditions result by replacing the right hand side of the first condition of (3) with a
nonzero probability p with p < q, and keeping the remaining three conditions the same.

It can easily be seen that these equations contradict local-realism if 0 ≤ p < q. To see this,
let us consider those realistic (hidden variable) states for which a2 = +1 and b2 = +1. For these
states, the second and the third equations in (3) tell that the values of a1 and b1 must be equal to
+1. Thus according to the assumptions of locality in time and realism Prob(a1 = +1, b1 = +1)
should at least be equal to q. This contradicts the Cabello’s argument as p < q. It should
be noted here that p = 0 reduces this argument to Hardy’s one. So by Cabello’s argument,
we specifically mean that the above argument is valid, even for nonzero p. The probability of
success of this argument is measured by the difference in the two nonzero probabilities appearing
in the argument, i.e. by q − p [8]. As this argument is more relaxed than Hardy’s argument, so
we expect it to show a higher violation of timelocal-realism of quantum mechanics.

5. Discussion
We discussed various nonlocality arguments in the temporal scenario. In particular, we reviewed
the Bell-like inequality, the Hardy and Cabello-like arguments. Hardy’s argument has already
been tested to be stronger in the temporal situation than its spatial version. As we have seen



that Cabello’s argument is more relaxed than Hardy’s argument, therefore we expect it to show
a violation at least equal to Hardy’s. In fact, we expect it to show a higher violation of timelocal-
realism of quantum mechanics which will be subject of future study.
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