
Equilibration of hot and dense nuclear matter

T. Thovhogi and A. Muronga

Physics Department, University of Johannesburg, P.O. Box 524, Auckland Park 2006,
Johannesburg, RSA

E-mail: tshilidzi.thovhogi@gmail.com

Abstract. We perform a Monte Carlo calculation simulation for a system which resembles an
equilibrated hadronic gas in a box using the microscopic transport model called the Ultra-
relativistic Quantum Molecular Dynamics (UrQMD). We calculate spectra, multiplicity, and
rapidity for various hadrons at fixed energy density. The particle multiplicity equilibrates after
some time, rapidity distribution is isotropic and the energy spectra of the different hadronic
species are fitted by a Boltzmann distribution to obtain equilibrium temperature. This indicates
that the system has reached equilibrium.

1. Introduction
The assumption that strongly interacting matter known as quark gluon plasma produced in heavy-ion
collisions at high energy, can reach the state of local equilibrium [1] is one of the most important
topics in the relativistic heavy-ion field of research. The degree of equilibration can be checked by
fitting the measured particle yields and transverse momentum spectra to that of the thermal model in
order to extract the conditions of the fireball at the chemical and thermal freeze-out [2-3]. Due to the
lack of a rigorous first-principle theory of nuclear reactions at relativistic energies, the approach to
local equilibrium is investigated by analysing the dynamics provided by microscopic Monte Carlo
simulations, i.e., microscopic string, cascade or transport models [4-5]. These models describe
experimental data on hadronic and nuclear collisions in a wide energy range reasonable well, but not
predict local equilibrium. For this study the microscopic transport model ultra-relativistic quantum
molecular dynamics UrQMD [6] is used to simulate the equilibrated hadronic gas in a box.

2. Microscopic Transport Model for Equilibrated Infinite Matter

2.1. Description of the UrQMD Model
To investigate the equilibration of the system, our hadronic medium is simulated using UrQMD. The
UrQMD is a microscopic transport model designed for the description of hadron-hadron, hadron-
nucleus and nucleus-nucleus collisions for energies spanning a few hundred MeV up to hundreds of
GeV per nucleon in the centre of mass system. It is a transport covariant model based upon Boltzmann
equation

߲. ݂(ݔ
ఓ,జ) = ,ܥ

where ݂is the one-particle phase-space distribution function for a given species i, and ܥ is interaction
or collision term.
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Interactions in our calculations are based only upon scattering. The criterion for a collision to occur is
based upon the geometric interpretation of the cross section:

௧݀௦≤ ݀ = ට
ఙ

గ
, =௧௧ߪ ݁ݕݐ,ݏ√൫ߪ ൯

where ௧݀௦ is the Lorentz-invariant transverse distance at closest approach between two particles
and ௧௧ߪ is the total cross-section. The description of the UrQMD model is presented in detail in [6].

2.2. Criteria of Thermal and Chemical Equilibrium
To force our system into equilibrium, we consider a system in a cubic box and impose periodic
boundary conditions in real space. Thus if a particle leaves the box, another one with the same
momentum enters from the opposite side. The overall energy density, �ofߝ the system is being fixed.
The initial distributions are composed of mesons with uniform random distributions in phase space.

The energy density is defined as ε =
ா


, where E is the energy of N particles:
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The three-momenta of the particles in the initial state are randomly distributed in the center of mass
system of the particles:

 

ே
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= 0

This technique is similar to the one done in [7-8]. The input parameters of our system are as follows:
volume of the box (10 x 10 x 10 fm3), and initial particles species ,ߨ) K,ߩ,ߟ).

2.2.1. Chemical Equilibrium
The time evolution of the various particles densities at zero net baryon number density and energy
densities =ߝ 0.3 is illustrated in Figure 1. The chemical equilibrium time for strange particles is much
longer than for non-strange hadrons due to suppression of strange processes. As shown in Figure 1 the
particle species saturates as a function of evolution time. The saturation of the particle densities
indicates the realization of chemical equilibrium. We therefore conclude that chemical equilibrium has
been reached.
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Figure 1. The time evolution of particle densities for an equilibrated system
of hadron gas at a zero net baryon density, V = 1000 fm3,T = 172 MeV and
=ߝ 0.3 GeV/fm3.

2.2.2. Thermal Equilibrium
After investigating whether the chemical equilibrium is attained, we then examine the energy
distributions at that particular evolution time-step in order to verify that thermal equilibrium has been
reached. A system which has attained thermal equilibrium should have its energy distributions
following a Boltzmann distribution:
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where 1/T is the slope parameter of the distribution and =ܧ ට
ଶ + ݉ 

ଶ is the energy of particle

species i. Figure 2 show the energy spectra for different particle species at energy density ߝ = 0.3
GeV/fm3. The solid lines are the fitted results obtained from Boltzmann distributions. The thermal
temperature is determined from the slope of individual fits of the particle species. The small
temperature deviation is due to the distortion of particle spectra from resonance effects, and statistical
fluctuations. We therefore conclude that the system attained thermal equilibrium.
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2.2.3. Rapidity and Transverse Momentum Distribution
As shown in Figure 3, the rapidity distribution for different particle species is isotropic. Figure 4
presents the transverse momentum spectra for different particle species at mid rapidity. It is described
by the following exponential distribution equation:
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where ݉ ் is the transverse mass defined as ݉ ் = ඥ் + ݉ . Note that this type of fitting procedure

will give the meaningful results for the temperature only at the low ் end of the spectrum since low
் particles are more likely to be in thermal equilibrium. Furthermore, the transverse momentum
distribution also depends on centrality since more central collisions are more likely to come to thermal
equilibrium.
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Figure 3. Rapidity distributions of π+, π-, K+ and K- at =ߝ 0.3 GeV/fm3.



Figure 4. Transverse momentum spectra of π+, π-, K+ and K- at mid-rapidity and ε = 0.3 GeV/fm3.

3. Conclusion
We have studied the space-time evolution of the strongly interacting matter formed in ultra-relativistic
heavy-ion collisions. The microscopic transport UrQMD model is used to simulate the equilibrated
hadronic gas in a box with periodic boundary imposed. It is shown that both chemical and thermal
equilibrium is reached by the system of hadronic gas.
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