

Contribution ID: 299

Type: Poster Presentation

First-Principles Calculations of the Structural, Electronic and Optical Properties of PdN and PdN2

Thursday, 12 July 2012 17:30 (2 hours)

Abstract content
 (Max 300 words)

The atomic and electronic structures of PdN and PdN2 were investigated using ab initio density-functional theory (DFT). We studied cohesive energy vs. volume data for a set of reported and hypothetical structures. Obtained data was fitted to a third-order Birch-Murnaghan equation of state (EOS) so as to identify the energetically most stable phases and to determine their equilibrium structural parameters. Electronic properties were investigated by calculating the band-structure and the total and partial density of states (DOS). Some possible pressure-induced structural and electronic phase transitions were tested. To derive the frequency-dependent optical spectra (i.e. absorption coefficient, reflectivity, refractive index, and energy-loss), we carried out expensive GW0 calculations within the random-phase approximation (RPA) to the dielectric tensor. Obtained results were compared with previous studies.

Apply to be
br> consider for a student
 award (Yes / No)?

Yes

Level for award

- (Hons, MSc,

- PhD)?

PhD

Main supervisor (name and email)
 -br>and his / her institution

Daniel P. Joubert, daniel.joubert2@wits.ac.za, School of Physics, University of the Witwatersrand.

Would you like to
 submit a short paper
 for the Conference
 Proceedings (Yes / No)?

Yes

Primary author: Mr SULEIMAN, MOHAMMED (School of Physics, University of the Witwatersrand, Johannesburg, Sout Africa.)

Co-author: Prof. DANIEL, JOUBERT (School of Physics, University of the Witwatersrand, Johannesburg, Sout Africa.)

 $\textbf{Presenter:} \quad \text{Mr SULEIMAN, MOHAMMED (School of Physics, University of the Witwatersrand, Johannesburg,} \\$

Sout Africa.)

Session Classification: Poster Session

Track Classification: Track G - Theoretical and Computational Physics