Characterization and XPS information of commercially Y₂O₂S:Eu³⁺ powder phosphor

JJ Dolo*, FB Dejene and HC Swart

Physics Department, University of the Free State, P.O. Box 339, Bloemfontein, 9300, South Africa

*Corresponding author: dolojj@qwa.ufs.ac.za

Abstract. Trivalent-europium doped yttrium oxysulphide phosphor (band gap ~ 4.2 - 4.8 eV) is an important phosphor system extensively applied in colour televisions, high resolution displays, memory devices, after glow phosphors, etc.. We report on the characterization of a red long-lasting phosphorescent material, $Y_2O_2S:Eu^{3+}$. The morphology and optical properties of the powder phosphor were characterized, the morphologies thereof shows that the particles differ in terms of sizes and shapes. Energy Dispersive X-ray analysis (EDX) confirms all the elements on the surface. X-ray diffraction (XRD) investigation showed a pure hexagonal phase of Y_2O_2S . All peaks have been perfectly indexed as the pure hexagonal phase. From the Photoluminescence (PL) spectrum, the main emission peaks are ascribed to the Eu^{3+} ion transition from 5D_J (J=0, 1, 2) to 7F_J (J=0, 1, 2, 3, 4). After irradiation with a wavelength of 320 nm, the phosphor emitted red long-lasting phosphorescence. X-ray photo electron spectroscopy (XPS) peaks for the $Y_2O_2S:Eu^{3+}$ have been observed for Y 3d at 156 and 158 eV, Y 3p at 298.5 and 310.5 eV, S 2p at 164.5 eV and S 2s at 228 eV, respectively.

1. Introduction

Phosphor is defined as a material that emits photons with high luminescence efficiency. The cathodoluminescent phosphors convert electron energy into visible light and are used in display devices as screen material. Trivalent rare-earth ions have usually been selected to be used as activators in line-emitting phosphors because the spectral emission lines of trivalent rare-earth ions in the host lattice are rather narrow [1,2]. Yttrium oxyculfide doned with europium (X- Ω -S:Eu³⁺) red

the host lattice are rather narrow [1,2]. Yttrium oxysulfide doped with europium ($Y_2O_2S:Eu^{3+}$) red phosphor is a high efficiency cathodoluminescent material that is used extensively in the phosphor screens Y_2O_2S :Eu³⁺has the sharper emission lines leading to better colorimetric definition and higher luminescence efficiency than the other red phosphors [3,4].Butcompared withtheothercolorpersistentphosphors [5], theprogressonthe researchofredpersistentphosphorsisverylimited. Therefore, the developmentofredlonglastingphosphorswithhighluminescenceandgoodchemicalstabilityisurgentlyneeded.Yttrium oxysulfidehasbeenknownasanexcellentphosphorhostmaterial foralongtime.WhiledopedwithEu³⁺, Mg²⁺, andTi⁴⁺ a redlong- lastingafterglowphosphorthathastheafterglowtimeofabove3h wassynthesized [6]. However, the progress on the system is research of Y_2O_2S : Eu³⁺, Mg²⁺, Ti⁴⁺ was very slow and their luminescentmechanismwasnotwellunderstood. In this study the Y_2O_2S : Eu³⁺ crystal structure, surface morphology, photoluminescence and surface state were characterized.

2. Characterization

Commercially available Y₂O₂S: Eu³⁺phosphor powders, obtained from Phosphor Technology were characterized using the following techniques:Scanning Electron Microscopy (SEM) images were taken with a Gemini LEO 1525 Model to determine the particle morphology. The crystalline structure of the phosphor powders were investigated using a Burker D8 (Burker Co, German) X-ray diffractometer with Cu K α = 1.5406 Å. The 100 µm, 25 W, 15 kV energy X-ray beam of a PHI 5400 XPS Versaprobe was used to analyze the S 2p, O 1s, O 2s, Y 3d and Y 3p binding energy peaks (pass energy 11.8 eV, analyser resolution \leq 0.5 eV). The possible chemical states were identified with the Multipak version of 8.2c computer software [7] using Gaussian-Lorentz fits.

3. Results and Discussion

Figure 1shows the XRD pattern of the Y_2O_2S : Eu³⁺ phosphor powder. The position and relative intensity of the XRD lines are in good agreement with the data of JSPDS file No.24-1424, which shows the pure Y_2O_2S hexagonal structure.

Figure 1.XRD pattern for the $Y_2O_2S:Eu^{3+}$ phosphor powder.

Figure 2 (a) and (b) shows the SEM image of the $Y_2O_2S:Eu^{3+}$ phosphor powder at different magnifications. The particles are polyhedron in shape and agglomerated, showing relatively good close packing which is one requirement for the cathode ray display (CRT) or X-ray intensifying screens and the particles differ in sizes and shapes. Figure 2 (c) shows the EDS data which confirms the presence of all the elements in the matrix, i.e (Y, O and S) together with the adventitious C. Eu^{3+} ions were not detected probably due to their relatively low concentration in the $Y_2O_2S:Eu^{3+}$ matrix.

Figure 2. (a) and (b) SEM image at different magnifications and (c) EDS spectrum of the $Y_2O_2S:Eu^{3+}$ phosphor powder.

Figure 3, shows the PL spectra of $Y_2O_2S:Eu^{3+}$ phosphor powder with excitation energy (λ_{ex} = 320 nm). The main emission peaks are due to the Eu³⁺ transition ${}^5D_j \rightarrow {}^7F_j$. The stronger red emission peaks lines at 618 and 627 nm are due to the transition ${}^5D_0 \rightarrow {}^7F_2$. The shorter wavelengthline at 595 nm corresponds to the transitions ${}^5D_0 \rightarrow {}^7F_1$. The PLE (Photoluminescence excitation) spectra consist of extremely broad bands that extend well into the near-UV region. Therefore, $Y_2O_2S:Eu^{3+}$ can be used as a red emitting phosphor in a three-band white LED excited by near-UV LEDs.

Figure 3.PL spectra for $Y_2O_2S:Eu^{3+}$ phosphor powder.

Figure 4, showsthe XPS surface measurement of the $Y_2O_2S:Eu^{3+}$ phosphor after sputtered clean (sputtering done with Ar⁺, 2 kV, 2 μ A, 1x1 mm raster). The XPS spectra of the $Y_2O_2S:Eu^{3+}$ shown in figure 4, reveals the presence of yttrium and sulphur in the expected stoichemistry Y:S). The spectra showed no extraordinary features.

Figure 4: XPS survey spectrum of Y₂O₂S:Eu³⁺ phosphor powder

Figure 5, showsthe XPS measured spectra of O 2s and Y 4p peaks. On constraining the two data sets with a constant total integrated O 2s intensity, it becomes evident that the intensity of the Y4p has decreased, for the Eu^{3+} doped. This suggests the possible substitution of Y^{3+} by Eu^{3+} ions. The Y4p peak due to excess Y_2O_3 (upon substitution) is expected at lower binding energy but was not detected probably due to overlapping with much larger O2s band. Alternatively, the small amount of Yttria is

located between the grain boundaries and could not be detected effectively due to the surface sensitive nature of the ESCA method [8]. The Y4p lines are located at about 23.7 eV (Y4p_{3/2}) and 24.8 eV Y4p_{1/2}).

Figure5.XPS measured spectra of the O2s (Solid line) and Y4p (dotted line)of Y₂O₂S:Eu³⁺ phosphor powder

Figure 6, shows the XPS measured spectrum of Y 3d from $Y_2O_2S:Eu^{3+}$. It has been reported that the $Y3d_{5/2-3/2}$ doublet position is at 157.2 eV and 159.7 eV. Figure 6 (b) shows the XPS spectrum of O1s with two different oxygen states. O1s peaks were located at 531.3 eV and 532.0 eV. The lower energy O1s peak is very consistent with normal Y-O bonding energy in Y_2O_2S [9].

Figure 6.XPS measured spectra of the (a) Y 3dand (b) O 1s of Y₂O₂S:Eu³⁺ phosphor pwder

Figure7(a) and (b), shows the XPS of S2s and S2p of $Y_2O_2S:Eu^{3+}$ respectively. The low signal-tonoise ratio in some of the XPS spectra in the region of both S2s and S2p peaks made systematic quantification of the different sulphur species present in the samples difficult. However, two sulphur species can be identified in the S2p peak, at the binding energies of 167.8 eV and 164.9 eV. In the light of the S2p peak analyses, only minor amounts of surface sulphate were present in the reacted samples.

Figure 7: XPS measured spectra of the (a) S2sand (b) S2p of Y₂O₂S:Eu³⁺ phosphor powder

4. Conclusion

EDS analysis confirms the presence of all elements on the surface of $Y_2O_2S:Eu^{3+}$. The hexagonal phase of $Y_2O_2S:Eu^{3+}$ was successfully determined by XRD. The elementary state of the surface was also determined with XPS. The SEM images with different magnifications revealed spherical particles with different shapes and sizes. CL degradation for both powders and thin films of $Y_2O_2S:Eu^{3+}$ will be done to confirm some species on the surface.

Acknowledgement

The authors send gratitude to the National Research Foundation (NRF) for funding the project and the University of Free State (Physics department, Center for microscopy and Geology department) for the research techniques used in this study.

Reference

[1] Yost DM, Russel TR and Garner CS, The Rare Earth Elements and

their Compounds, Wiley, New York, 1950.

[2] Taylor KNR, Darby MI, Physics of Rare Earth Solids, Chapman

& Hall, London, 1965.

[3] Royce MR, U.S. Patent 3, 245 (1968) 418

- [4] Yocom PN, U.S. Patent 3, 247 (1968) 418
- [5] Wang XX, Zhang ZT, Tang ZL, Lin YH, Mater. Chem. Phys. 80 (2003) 1.

[6] Murazaki Y, Arak K, Ichinomiya K, J. Rare Earth Jpn. 35 (1999) 41.

[7] Moulder F, Stickle WF, Sobol PE, Bombe KD, Handbook of X-ray Photoelectron

Spectroscopy, ULVAC-PHI, Inc., 370 Enzo, Chigasaki, 143 Japan (1995)

- [8] Veith M, Mathur S, Kareiva A, Jilavi M, Zimmer M, and Huch V, J. Mater. Chem., 9 (1999) 3069-3079.
- [9] de Rouffignac P, Park J-S and Gordon RG, Chem. Mater., 17 (2005) 4808-4814