4-8 July 2016
Kramer Law building
Africa/Johannesburg timezone
The Proceedings of SAIP2016 published on 24 December 2017
Home > Timetable > Session details > Contribution details
PDF | XML | iCal

Novel method to make a calibrated thoron source

Presented by Mr. Elmughera ELHAG on 5 Jul 2016 from 16:10 to 18:00
Type: Poster Presentation
Track: Track B - Nuclear, Particle and Radiation Physics
Board #: B.364


Researchers around the world have recognized that radon (Rn-222) is a hazard to human health, and more recently thoron (Rn-220) has been found to be a larger problem than expected. Rn-222 is a progeny of radium in the uranium series while Rn-220 is a member of the thorium series. The recent interest for measuring Rn-220 activity in air and the following development of the corresponding measurement techniques, require the improvement of standards for the calibration and characterization of the measurements device which have often been optimized for radon measurements. In this work we describe a simple, cheap method that can provide a reasonably accurate flow of Rn-220 for checking Rn-220 detectors and to investigate Rn-220 measurements. A novel Rn-220 source has been developed using Thorium Nitrate crystals, that are dissolved in water and the Rn-220 is created by bubbling air through the solution using the continuous monitoring detector system, the RAD7. The strength of the source is found by simultaneously measuring the gamma rays from the water using a sodium iodide detector (NaI). The difference in the gamma rays that are emitted before and after the Rn-220 in the thorium decay chain give an accurate measurement of the concentration of Rn-220 that leaves the water. The measurement has to be taken over a few hours to allow for the decay of Pb-212 that has a half-life of 10.6 hours.






Prof Robert Lindsay, University of the Western Cape email:rlindsay @uwc.ac.za






Location: Kramer Law building
Address: UCT Middle Campus Cape Town

Primary authors