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Abstract. Gauge-Higgs unification models give interesting solutions to the hierarchy problem
in particle physics. The common study of this type of model is done by using a decomposition of
5-dimensional particles in 4-dimensional Kaluza-Klein modes, which is a handy way to compute
the infinite sums appearing in the model. In order to take into account the running of coupling
constants in these models, we propose in this proceedings a different decomposition using
winding modes around the fifth dimension, which is compactified. This decomposition not
only permits us to take running into account, but also gives a faster converging series in all the
quantities when summing over these modes.

1. Introduction
Since the discovery of a Higgs boson at the Large Hadron Collider (LHC) in 2012, a lot of
questions have emerged concerning its mass and couplings, as they are close to the electroweak
(EW) symmetry breaking scale. One such issue relates to the Planck scale being 1024 times
higher than the EW scale, and that this scale enters the quantum loop corrections to the Higgs
boson mass, giving rise to the hierarchy problem. This problem can be solved for gauge theories
in more than four-dimensions [1], which can also give an interesting unification of gauge and
Yukawa couplings with the running in the renormalisation group [2], where we can see that all
the coupling constants run towards a common value at a large energy scale.

These theories include the Higgs boson as a component of a multidimensional gauge boson,
rather than via an ad hoc addition to the model. In a previous work by some of the authors,
an interesting toy model was developed, that of a flat 5-dimensional space-time compactified
as a S1/Z2 [2]. In this model there exists different methods for studying the 5-dimensional
fields, where the most common is to decompose the fields in an infinite tower of 4-dimensional
fields (as a Fourier decomposition) called Kaluza-Klein modes (KK modes). This decomposition
is convenient, as it allows us to compute (in simple cases) the infinite sums, and is the most
common approach used in the literature [3, 4].
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In order to introduce the running of the coupling constants in this kind of decomposition, we
need to add contributions it at the right energy scale for each KK mode, and this complicates
the calculation. We will present a different decomposition, in terms of winding modes, allowing
a simpler physical interpretation. Whilst this method may appear to be harder to work with,
as each term can be taken at a specific energy scale, it does enable a full running calculation to
be done. This winding mode approach is further explained in references [5, 6]. Moreover, we
will see that this decomposition brings advantages in terms of not just renormalisation, but also
for the convergence of the infinite sums. As such, in section 2, we will see how the gauge-Higgs
model can be described in an SU(N) representation, deriving the effective Higgs potential in
terms of winding modes in section 3. Finally, in section 4, we will study the effective potential
and what can be done to improve the SU(3) model studied here.

2. Gauge-Higgs unification with an S1/Z2 orbifold
According to reference [3], we can develop a gauge-Higgs unification model on a five-dimensional
orbifold M4 × (S1/Z2), where M4 is the 4-dimensional Minkowski-space and S1/Z2 is obtained
by identifying two points on the compactified fifth dimension S1 by parity for x = 0 and x = πR.
Our model is defined by the boundary conditions and by the parity operators defined as:

U : AM (x, y + 2πR) = UAM (x, y)U † , (1)

P0 : Aµ(x,−y) = P0Aµ(x, y)P0
† , (2)

(3)

(4)

P0 : Ay(x,−y) = −P0Ay(x, y)P0
† ,

P1 : Aµ(x, πR− y) = P1Aµ(x, πR+ y)P1
† ,

P1 : Ay(x, πR− y) = P1Ay(x, πR+ y)P1
† , (5)

where AM is a gauge field in 5-dimensions, with the convention that we use Greek letters for
the 4-dimensions of M4 and Latin letters for 5-dimensions (or just 5 for the fifth dimension).
Normally we have U = eiαP1P0, but as it does not affect the results, and for simplicity, we will
take U = P1P0.

From these operators it is possible to define the boundary conditions for the other fields in
our model, where for a scalar field φ we have

φ(x, y + 2πR) = eiπβφTφ[U ]φ(x, y) , (6)

(7)φ(x,−y) = ±Tφ[P0]φ(x, y) ,

φ(x, πR− y) = ±eiπβφTφ[P1]φ(x, πR+ y) , (8)

where T [U ] represents an appropriate representation matrix. For instance, if φ belongs to the
fundamental or adjoint representation of the group, then Tφ[U ]φ is Uφ or UφU †, respectively.
Note that eiπβφ must be equal to either +1 or -1.

For Dirac fields ψ we have

(x, y + 2πR) = eiπβψTψ[U ]ψ(x, y) , (9)

(10)(x,−y) = ±Tψ[P0]γ
5ψ(x, y) ,

(x, πR− y) = ±eiπβψTψ[P1]γ
5ψ(x, πR+ y) , (11)

where as before, we must have eiπβψ to be equal to +1 or -1.
The following Lagrangian is then used in order to compute the effective potential:

L = Lgauge + Lmatter ; (12)
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Lgauge = −1

2
Tr(FMNF

MN )− 1

α
Tr(F [A]2)− Tr

(
η
δF [A]

δAM
DMη

)
, (13)

Lmatter = ψiγMD
Mψ + |DMφ|2 . (14)

We then split the gauge field AM into its classical part A0
M , and its quantum part AqM , from

which we have the gauge-fixing condition F [A0] = 0, such that

F [A] = DM (A0)AqM = ∂MA
qM + ig[A0

M , A
qM ] = 0 . (15)

Note that the notation DM (A0) is often denoted D0
M for short. This means that Lgauge can be

rewritten as:
Lgauge = −Tr(AqMM

g
MNA

Nq)− Tr(ηMghη) , (16)

whereMg
MN = −ηMND

0
LD

0L − 4igF 0
MN , (17)

(18)

and φ, we obtain the one-loop effective

Mgh = D0
LD

0L .

Integrating out the quantum fields AqM , η, η,
potential for A0

M :

Veff [A0] = Veff [A0]g+gh + Veff [A0]fermion + Veff [A0]scalar ; (19)

Veff [A0]g+gh = −(D − 2)
i

2
Tr(ln(D0

LD
0L)) , (20)

Veff [A0]fermion = h(D)
i

2
Tr(ln(D0

LD
0L)) , h(D) = 2D/2 , (21)

Veff [A0]scalar = −2
i

2
Tr(ln(D0

LD
0L)) , (22)

where we have supposed that FMN = 0 and φ-fields are massless. From the next section onwards
we shall focus on a particular group to compute the effective potential.

3. Functional method in SU(3)w
As described in reference [7], it is possible to take P1 = P2 = diag(1,−1,−1) to break the
group G = SU(3)w × SU(3)c to GSM = SU(2)w × U(1) × SU(3)c, which is exactly the
Standard Model group. In this configuration we only have a doublet for Ay, belonging to
G/GSM , which has a zero-mode. This doublet can be identified as our Higgs, such that

H = (Ay
1(0)

+ iAy
2(0)

, Ay
4(0)

+ iAy
5(0)

)t where the index i in the notation Aiy refers to the SU(3)
generator index. The vacuum expectation value (VEV) is a finite calculable quantity, which is
determined by the minimisation of the one-loop induced effective potential as the function of
a constant background field, 〈Ay〉 ≡ By. In this case, keeping only the non-vanishing zero-
modes and using the global SU(2) × U(1) symmetry, we can set the VEV in the form of
By
a = (By

1, 0, 0, 0, 0, 0, 0, 0), which leads to the effective potential formula:

Veff = V g+gh
eff + V f

eff ; (23)

V g+gh
eff =

3

2

1

2πR

∫
d4p

(2π)4

∞∑
n=−∞

[ (
ln −p2 +

n2

R2

) (
+ ln −p2 +

(
(n− α)

R

)2
)

(
+2ln −p2 +

(
(n− α/2)

R

)2
)]

, (24)
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V f
eff = −Nf

1

2πR

∫
d4p

(2π)4

∞∑
n=−∞

[ (
ln −p2 +

n2

R2

) (
+ 2ln −p2 +

(
(n− α/2)

R

)2
)]

. (25)

The variable α is proportional to the VEV of By where By = α/gR [7]. Nf is the number of
fermions we consider in this model, and the sum over n is over the full KK tower.

As explained in reference [6], it is possible to replace the KK modes in the previous expression
by the winding modes we want to use. To do this we can identify in the propagator expression
for the KK decomposition:

+∑∞
n=−∞

ln

[
−p2 +

(
n−m0

R

)2
]

= −
∫
dp2

+∑∞
n=−∞

1

−p2 +
(n−m0

R

)2 =

∫
dp2G̃KK(p,m0) , (26)

where m0 represents the mass of the zero-mode and G̃KK(p,m0) represents the KK propagator
of a scalar particle. From this we can replace the propagator in KK modes by the propagator
in S1/Z2 in terms of winding modes, such that:

∫
dp2G̃KK(p,m0) =

∫
dp2

∫ πR

0
dy

+∑∞
n=0

[G̃Winding(p, 2nπR,m0)± G̃Winding(p, 2y + 2nπR,m0)] ,

(27)
where G̃Winding(p, |y − y′|,m0) is the winding mode propagator and can be written as:

G̃Winding(p, |y − y′|,m0) =
eiχ|y−y

′|

2χ
, (28)

√
with χ = p2 −m2

0.

We can now do a different type of regularisation here by just taking out the winding mode
n = 0, which removes the whole divergent part of the effective potential. From this, we can
replace the propagators by their simplified integrals:

∫
dp2

∫ πR

0
dy

+∑∞
n=0

[G̃Winding(p, 2nπR,m0)± G̃Winding(p, 2y + 2nπR,m0)] =

∫
dp2

+∑∞
n=0

[
πReiχ2πRn

2χ
± eiχ2πR(n+1) − eiχ2πnR

4iχ2

]
. (29)

We now perform a Wick rotation (iχ→ −χE) to perform a Euclidian integral. We also have
that dp2 = dχ2 = 2χdχ = -2χEdχE , which means that

∫
dp2

+∑∞
n=1

[
πReiχ2πRn

2χ
± eiχ2πR(n+1) − eiχ2πnR

4iχ2

]
=

∫
dχE

+∑∞
n=1

e−χE2πRn
[
πR∓ e−χE2πR − 1

2χE

]

= −
+∑∞
n=1

(
e−χE2πRn

2n
± πR(Ei(−2πR(n+ 1)χE)∓ Ei(−2πRnχE))

)
,

(30)

where χE =
√
p2E +m2

0 and Ei(x) is the exponential integral function defined as

Ei(x) = −
∫ +∞

−x

e−t

t
.
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From this, we finally have that:

−3
i

2

dp4

(2π)4
1

2πR

∫ {
+∑∞

n=−∞
ln

[
−p2 +

(
n−m0

R

)2
]}

=

−3

4

∫
dpE

p3EΩ(4)

(2πR)4

+∑∞
n=1

(
e−χE2πRn

2πRn

)
± (Ei(−2πR(n+ 1)χE)∓ Ei(−2πRnχE)) ,

(31)

where Ω(4) is the volume of the 4-dimensional sphere, which is equal to π2/2. We define the
function f(m,n) such that:

f(m0, n) = − 3

128

∫
dpE

p3E
π2R4

(
e−χE2πRn

2πRn

)
± (Ei(−2πR(n+ 1)χE)∓ Ei(−2πRnχE)) . (32)

Now we can rewrite the effective potential with winding modes decomposition, using the f
function which is defined for all m0 and n > 0 as:

Veff (α) =
∞∑
n=1

[
f(0, n) + f

(
α

R
, n

)
+ 2f

(
α

2R
,n

)
− 2

3
Nf

(
f(0, n) + 2f

(
α

2R
,n

))]
. (33)

The advantage of this expression is that, in each mode n, the running coupling constant can
be taken at the energy scale of the mode, so that we can easily take into account the running
developed in reference [2] for this SU(3) model of gauge-Higgs unification. Moreover, each term
in n can be calculated numerically and the series converges much faster than for the KK mode
approach. For example, the evaluation for n = 1 and n = 2 shows that there is a factor of 100
between them, due to the exponential dependence on n in each term. This can be compared to
the KK sum, which only converges as 1/n5. As such, it is possible to effectively study the global
evolution of the effective potential with α only with the first term n = 1, or with the first few
terms.

In figure 1 we find that for Nf = 1 the effective potential is symmetric in α, and the only
minimum for the first term of Veff (α) is for α = 0. This means that we don’t have any
spontaneous symmetry breaking in this model. We can argue that the shape of the potential
is different from the one using KK modes in reference [7], however, this is due to the different
approximations used for the KK modes, such as the regularisation method, which means

∫
d4pE
(2π)4

∑∞
n=1

(
log p2E +

(n− α)2

R2

)
→

∞∑
n=1

1

n5
cos(2πnα) . (34)

Note that the periodicity of the effective potential comes from this approximation.

4. Conclusion
In this paper we have described a new method for computing the effective Higgs potential
in a gauge-Higgs unification model. This method allows us to take into account the running
of the coupling constants inside each term of the effective potential. In our toy model with
SU(3) the running doesn’t have a great deal of impact, because the coupling constants decrease
when n goes up, which means that the running makes the sum converge even faster, and so
the shape of the effective potential with n = 1 does not change much compared to the full
effective potential. As such, it seems that this simple model gives a potential that does not
provide spontaneous symmetry breaking. On the other hand, this method does permit a simple
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Figure 1. First term (n = 1) of the effective potential with Nf = 1 for different values of α.

elimination of divergences by removing the n = 0 mode, and the convergence of the sum is faster
than with KK modes. Moreover, we didn’t use any approximation on the VEV compared to the
compactification scale to do the calculation, which means that our effective potential remains
accurate for higher values of α, that is, it will remain a valid effective description.

To extend beyond this work we have begun using this method with an SU(5) model, along
with attempts with other methods: such as diagrammatic computation of the effective potential
with winding modes, functional computation with KK modes, differential computation of the
effective potential. Note that each of these other methods have major drawbacks making it
difficult to include the running of coupling constants. A discussion of these methods shall be
the focus of a future work [8].
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