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Abstract. In this work, we look at the cosmological constraints of some f(R)-modified gravity
models such as f(R) = βRn (a toy model) and more realistic ones like the Starobinsky
and Hu-Sawicki models. We use 236 intermediate-redshift and 123 low-redshift Type 1A
Supernovae data obtained from the SDSS-II/SNLS3 Joint Light-curve Analysis (JLA), with
absolute magnitudes, for the B-filter, found on the NASA Extragalactic Database (NED). We
then develop a Markov Chain Monte-Carlo (MCMC) simulation to find the best fit (firstly
to the ΛCDM model), to obtain the cosmological parameters (Ωm and h̄). We then use the
concordance model results to constrain the priors for the f(R)-gravity models on the MCMC
simulation. We assume a flat universe Ωk = 0 and a radiation density Ωr that is negligible in
both the ΛCDM model and f(R)-gravity models. Thus, the only difference between the ΛCDM
model and f(R)-gravity models will be dark energy and the arbitrary free parameters. This will
tell us if there exist viable f(R)-gravity models when we compare them to the results of the
ΛCDM model and thus constrain the generic f(R)-gravity models with cosmological data.

1. Introduction
Since the theory of General Relativity (GR) was proposed by Einstein in 1915, it has developed
into the accepted theory to explain gravity. GR is a generalization of Newtonian gravity in the
presence of extreme gravitational fields. The reason behind the acceptance, among others, was
due to the discovery by Hubble in 1929 that the Universe is expanding. GR was able to explain
this discovery, and this led to the Hot Big Bang theory model, which uses GR as the physical
basis. With the observational discovery in more recent times that the expansion of the Universe
is accelerating, which is not in line with GR predictions, the Hot Big Bang model had to be
improved. An unknown pressure force acting out against gravity, dubbed “dark energy” was
added to explain why gravity on cosmological scales is not able to slow down the expansion.

The cosmological field equations in standard cosmology are derived by the using variational
principle on the Einstein-Hilbert action

A =
c4

16πG

∫
d4x
√
−g
[
R+ 2(Lm − Λ)

]
, (1)

where Λ is the cosmological constant representing the “dark energy” pressure force, and Lm is
the standard matter Lagrangian [1]. These field equations are given by

Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν , (2)

where Rµν and R are the Ricci tensor and Ricci scalar respectively, gµν is the metric tensor and
Tµν represents the energy-momentum tensor. The two most important cosmological equations in
Eq. (2) are the Friedmann equations (we assume that in the geometric unit system c = 1 = 8πG),
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which in the Friedmann-Lemâıtre-Robertson-Walker (FLRW) spacetime metric read[
ȧ(t)

a(t)

]2

=
ρ(t)

3
− κ

a2(t)
+

Λ

3
, (3)

ä(t)

a(t)
= −1

6

(
ρ(t) + 3P (t)

)
+

Λ

3
, (4)

where a(t) is the scale factor (describing the relative size of the Universe at a certain time), ρ(t)
is the energy density, P (t) is the isotropic pressure, and κ is the 3D (spatial) curvature. To close
the above system of expansion equations, we relate ρ and P through the equation of state

P (t) = ωρ(t) , (5)

where we assume a perfect-fluid system with a constant equation of state parameter ω.

1.1. Problems faced by GR and proposed solutions ∼ f(R)-gravity
The Friedmann equations are used to mathematically describe the Big Bang theory and the on-
going expansion (with the inclusion of dark energy to explain the late-time acceleration) of the
Universe. The inclusion of dark energy provides one of the problems faced by the ΛCDM model,
since dark energy is an unknown pressure force acting out against gravity, but have been shown
to make up ∼ 68% of the Universe, [2]. Furthermore, an early-time accelerated expansion, called
the inflation period, added other problems to the ΛCDM model such as the horizon problem
and the coincidence problem. Other arising problems faced by the ΛCDM model also include
the Magnetic monopole problem (none has been found) and the Universe’s matter/anti-matter
ratio, which is expected to be equal to 1, but is close to zero [3].

Due to the problems faced by the ΛCDM model, there exist proposed solutions in the form
of modified gravity models. In some of these modified theories, you may add extra fields or
go to higher dimensions. We will be looking at a higher-order derivative theory, called f(R)-
gravity model. For these models, the modification occurs when changing the Ricci scalar in
the Einstein-Hilbert action (1) to a function of the Ricci scalar, namely f(R). Re-deriving the
Einstein field equations, we obtain

f ′(R)Rµν + gµν�f
′(R)−∇µ∇νf ′(R)− 1

2
gµνf(R) = Tµν , (6)

where � = ∇σ∇σ is the covariant d’Alembert operator. As you will notice in equation (6),
we do not have a dependency on the cosmological constant, since this modified theory tries to
explain the accelerated expansion without the inclusion of dark energy. We can then re-derive
the Friedmann equations for f(R)-gravity, and obtain[

ȧ(t)

a(t)

]2

=
ρ(t)

3f ′(R)
− κ

a2(t)
+

1

6

(
R− f(R)

f ′(R)

)
−HṘf

′′(R)

f ′(R)
,

ä(t)

a(t)
= − ρ(t)

3f ′(R)
+

f(R)

6f ′(R)
+HṘ

f ′′(R)

f ′(R)
.

(7)

2. Supernovae Type 1A data and MCMC simulations
2.1. Distance modulus
To test the f(R) Friedmann equations (7), we use Supernovae Type 1A data. The reason for
this is due to the fact that Type 1A Supernovae (White Dwarf (WD) accreting a low mass
companion star) are regarded as standard candles, since their limunosities are relatively similar
to one another. This would mean that the measured flux is only dependent on the distance to
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supernovae and not the composition or mass of the WD. We will use redshift to approximated
the distance. Thus, an expanding universe, where the distance to the supernovae is changing,
can be used to find the best fitting distance modulus for our Friedmann equation. For simplicity,
we will assume a flat universe Ωk = 0, with a negilible radiation density Ωr ≈ 0 [2].

We will be using data obtained from SDSS-II/SNLS3 Joint Light-curve Analysis (JLA). From
that particular dataset, we will use 123 are low-redshift supernovae with a redshift between
0.01 < z ≤ 0.1 and 236 supernovae with an intermediate redshift between 0.1 < z ≤ 1.1. The
reason we will using low-redshift data, is due to the fact that we will be testing the model for a
late-time acceleration, thus a redshift below ∼ 0.5. Furthermore, we will be using the calculated
absolute magnitudes of these supernovae for the B-filter, that can be found in [4, 5, 6].

The distance modulus can be derived from the luminosity distance DL, which relates two
bolometric quantities, namely the luminosity L and the flux f of the distant supernovae. We
can then relate DL to the transverse comoving distance, by using redshift and obtaining

DL = (1 + z)DM . (8)

By using the conditions for the transverse comoving distance as a function of the curvature
of spacetime density (Ωk) found in [7], we can determine that DM = Dc, where Dc is the
line-of-sight comoving distance. The line-of-sight comoving distance is defined as

Dc =

∫
cdt

a
= DH

∫ z

0

dz′

h(z′)
, (9)

h̄where DH = 3000 km
s.Mpc is the Hubble distance and h(z) is the normalized Hubble parameter

in terms of redshift. By using the definition of the distance modulus (in Mpc), and the
aforementioned different distance definitions, we obtain

µ = m−M = 25− 5× log10

(
3000h̄−1(1 + z)

∫ z

0

dz′

h(z′)

)
, (10)

wherem is the apparent magnitude andM is the absolute magnitude of the measured Supernovae
[5]. This method is called supernova cosmology [8].

2.2. Markov Chain Monte Carlo (MCMC) simulations
To fit the data to the distance modulus, we will use MCMC simulations. The MCMC simulation
is able to search for the most probable free parameter value, given certain physical constrains.
It starts searching at some initial given value, by calculating the likelihood of the distance
modulus for that particular initial condition. It then takes a random step for each parameter
in the parameter space away from the initial values. Then it calculates the likelihood for the
distance modulus for all possible combinations between the initial parameter values and the new
parameter values to find the combination with the largest likelihood of occurring. The simulation
then finds an acceptance ratio between the initial parameter values and the new largest likelihood
combination parameter value. If the ratio is above 1 the new values are accepted and the entire
procedure starts over. If the acceptance ratio is below 1, a chance is created for the second
combination to still be accepted in ratio to the probabilities for each combination to occur. If
it is not accepted, the initial parameter is accepted and the entire procedure starts over. This
continues until it converges to the most probable best fit parameter values.

We will use the EMCEE Hammer Python package to execute the MCMC simulation. This
package uses different random walkers (in most cases we will use 100 random walkers), each
starting at a different initial parameter value and each converging on the most probable
parameter values. This creates a Gaussian probability distribution. Using the average values
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for each probability distribution for each parameter, we will then have the best-fit parameter
value for each parameter and their 1σ-value (error bars)1.

3. Results
3.1. Concordance model ∼ ΛCDM model
We use the ΛCDM model to calibrate our MCMC simulation. We will use the ΛCDM model as
the “true” model to which we can compare the f(R)-gravity models against, to find if they are
viable for being alternative models. We assume a flat universe Ωk = 0, as well as, neglecting the
radiation density of the Universe, since the expected value is in the range of Ωrh

2 = 2.47× 10−5

[10] (they assumed h = 0.73). Using these assumptions, we obtain a Friedmann equation in
terms of redshift as

h(z) =
√

Ωm(1 + z)3 + 1− Ωm, (11)

where h(z) = H(z)
H0

is dimensionless parameter, and making the substitution ΩΛ = 1−Ωm. When

we execute the MCMC simulation for the ΛCDM model, we obtain the results in Figure (1).

Figure 1. MCMC simulation results (Panel: 1) and the corresponding model fitted to the
Supernovae Type 1A data obtained from JLA (Panel: 2). Furthermore, the residuals between
the model prediction and the actual data points are also shown (Panel: 3).

From Figure (1), we can confirm that the MCMC simulation works, even though the predicted
parameter values are not within 1σ from the Planck2018 result (blue line in Panel: 1). The reason
for this is due to the Planck results being determined on Cosmic Microwave Background (CMB)
radiation data, and it has been shown that the Supernovae Type 1A data predicts a higher
Hubble constant value than the CMB results [11]. The reason for showing the Planck results is
just to remind us that we did use Planck results to make our assumptions and also to show the
discrepancy between supernovae and CMB results.

3.2. f(R)-gravity model results
Since Figure (1) confirmed that our MCMC simulation works, we can go ahead and test different
f(R)-gravity models in a similar fashion as done for the concordance model. Thus, we derive
a distance modulus equation for each of the chosen f(R)-gravity models. These models include
2 toy models, the Starobinsky model and the Hu-Sawicki model, where the latter 2 models are
considered as the more realistic models:

• f(R) = βRn - First toy model,

1 This entire section including the MCMC simulation code is similar to work done in the conference proceedings
paper by [9], where they used the code developed in the masters dissertation, which this paper is based on, to
test their model.
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• f(R) = αR+ βRn - Second toy model,[
)R(1 + R2

2
c

)−n − 1
]

-Starobinsky model,• f(R) = R+ βRc

• f(R) = R− αRc
[ (

R
Rc

n

1+
(

R
Rc

)n]- Hu-Sawicki model.

We use the best-fit parameter values for the ΛCDM model to set appropriate priors for the f(R)
models, to ensure that the resulting cosmological values are close to those found by the ΛCDM
model. The best-fit model results (without the MCMC results) are shown in Figures 2 - 5 in
the same order as given above. The Starobinsky and Hu-Sawicki model results are preliminary
due to having non-solvable Friedmann equations (executing a numerical method).

h̄
Figure 2. First toy model’s best fit to the Supernovae Type 1A data, with cosmological
parameter values Ωm = 0.285−

+0
0
.
.
082
105, = 0.665−

+0
0
.
.
054
045, and q0 = −0.011−

+0
0
.
.
001
002. The f(R)-model

free parameter values are β = 2.687−
+0

0
.
.
968
999 and n = 1.270−

+0
0
.
.
000
000.

h̄
Figure 3. Second toy model’s best fit (n = 2 and the (-) solution) to the Supernovae Type
1A data, with cosmological parameter values Ωm = 0.249−
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4. Conclusion
From these results, we can see that these models do fit the data, although each model has a
disadvantage in some sense. In the first toy model, the predicted cosmological values are close to
the Planck2018 results [2], thus minimizing the discrepancy between CMB and Supernovae Type
1A results, but struggled with predicting the period before the acceleration started (z > 0.5),
as well as with the deceleration parameter value (q0) that is expected to be close to ∼ −0.5
based on observations. The second toy model fitted the data better, but gave a Hubble constant
that is lower than any observed value. The Starobinsky and Hu-Sawicki models (preliminary
results) found realistic Hubble constant values compared to the CMB observations, but in both



SAIP2019 Proceedings 

178SA Institute of Physics ISBN: 978-0-620-88875-2 

h̄
Figure 4. The Starobinsky model’s best fit to the Supernovae Type 1A data, with cosmological
parameter values Ωm = 0.238−
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Figure 5. The Hu-Sawicki model’s best fit to the Supernovae Type 1A data, with cosmological
parameter values Ωm = 0.213−

+0
0
.
.
076
038, = 0.688−

+0
0
.
.
024
024, and q0 = −0.538−

+0
0
.
.
144
179.The f(R)-model free

parameter values are α = 4.823−
+0

0
.
.
070
092, β = 5.012−

+0
0
.
.
087
087, and n = 3.500−

+0
0
.
.
038
049.

cases found matter densities that were lower than observations suggest. Both of these also gave
deceleration parameters close to the expected values.

Future work will include doing a statistical analysis on each individual best-fit values by
calculating the χ2-value. Furthermore, we will also calculate the AIC and BIC criterion values
of each for the f(R)-gravity models and compare them to the ΛCDM model to check if some of
these f(R)-gravity models are cosmologically viable alternatives or not.
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