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Abstract. This paper presents the top-quark background estimation for a heavy scalar H
that decays to Standard Model Higgs boson (h) and a Higgs-like scalar (S). This work uses
the dataset √corresponding to an integrated luminosity of 36 fb−1 of pp collisions at center-of-
mass energy s =13 TeV. For this analysis the final state consists of two oppositely charged
leptons with different flavour (e±µ∓) and jets. In this analysis the dominant Standard Model
background is made of the top-quark processes (tt̄ and Wt). The top quark control and
validation regions are defined in the 1 b-tagged jet and 2 b-tagged jets phase space, respectively.
The construction of the top-quark validation region is defined in order to correct the Monte
Carlo mismodeling observed in the lepton kinematics.

1. Introduction
A wide range of results validating Standard Model (SM) processes are published by ATLAS
[1, 2] and CMS [3] collaborations pertaining the multi-lepton production at the Large Hadron
Collider (LHC) which observe discrepancies between data and Monte Carlo (MC). Excesses can
be explained by the Madala hypothesis [4, 5, 6, 7]. In that hypothesis, H decays to Sh which
subsequently decays into a wide range of possible final states, dominated by leptons and jets.

This paper presents the top-quark background estimation for the H → Sh search using a dataset
corresponding to√an integrated luminosity of 36 fb−1 recorded by the ATLAS detector at center-
of-mass energy s = 13 TeV. The Madala hypothesis uses a simplified model that considers
gluon-gluon fusion production mode in association with the heavy scalar (H) that decays into
a Higgs-like scalar (S) and the Standard Model (SM) Higgs boson (h). The S boson is assumed
to have the either of or Higgs boson’s branching ratio depending on its mass (mS).
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2. Object Selection
The final state consists of two oppositely charged leptons with different flavor and at least two
jets. In this analysis, the main physics objects are the electrons, muons, jets and missing trans-
verse momentum (Emiss ). Electron candidates must have pseudorapidity range |η| < 2.47,T, track

excluding the transition region between the barrel and endcaps in the LAr calorimeter (1.37
> |η| >1.52). The muon candidates must have pseudorapidity range |η| <2.5. The leading lep-
ton to satisfy pT > 27 GeV, sub-leading lepton pT > 15 GeV and veto events having additional
leptons with pT > 10 GeV. The leading lepton and sub-leading lepton are the leptons with the
highest pT and second highest pT, respectively.

The jets are reconstructed by the anti-kt algorithm [8] with a distance parameter R=0.4 using a
cluster of energy deposit in the calorimeters. The jets are required to have pT > 25 GeV within
the range |η| < 2.5. However, jets with pT < 60 GeV are required to have Jet-Vertex-Tagger
(JVT) [9] less than 0.59, where JVT is a technique used to separate jets from pile-up events. In
Addition, jets originating from b-hadrons are identified using the MV2c10 b-tagging algorithm
[10, 11] with an efficiency of 85%. Finally, b-tagged jets are required to have pT > 25 GeV.

3. Signal Region Definition
Phase space with high signal sensitivity and low background contamination determines the signal
region (SR). The top-quark background is reduced by selecting events without b-tagged jets as
shown in Figure 1 (a). After applying a b-tagged jet veto, the signal is more dominant at ≥ 2
jets region as shown in Figure 1 (b).
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Figure 1: Shape Comparison of signal and background (both normalized to unity) after selecting
events with two high pT leptons: (a) Number of b-tagged jets and (b) Number of jets distributions
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4. Top-quark Background Estimation
The top-quark background estimation is based on MC simulation and the experimenta data.
In this analysis the top-quark background is dominated by the tt̄ events due to its large cross
section and the contribution from the single-top (Wt) is relatively small. After applying the
requirements discussed in the section 3, the SR is dominated by the top-quark production with
60% contribution. Other relevant background contributions arise from the production of WW ,
W+jets and Z+jets. The top-quark is estimated by defining a control region (top CR) and a
validation region (top VR) to be orthogonal in the SR and required to be signal depleted. The
top CR is constructed in order to derive the normalization factors and extrapolate the top-quark
contribution to the SR. In order to test the modeling of the top-quark processes a top VR is
constructed.

The top CR is selected by applying the SR selection with an additional requirement on the
invariant mass of the di-lepton system (m``) to be greater than 150 GeV in order to achieve a
signal depleted region, as shown in Figure 2 (a). The top VR is selected by same SR selection
with the exception of the b-tagged jets requirement. Moreover, in order to reduce the signal
contamination in the top VR the invariant mass of the two b-tagged jets (mbb) is required to be
above 150 GeV as shown in Figure 2 (b). The event selection summary is presented in Table 1
and the contributions from different SM processes are shown in Table 2
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Figure 2: Comparison shape of signal (normalized to total background) and background after
selecting events with two high pT leptons and at least two jets: (a) m`` and (b) mbb distributions.

Table 1: Analysis selection for SR, top CR and top VR.

Observable SR top CR top VR
Leading lepton pT
Sub-leading lepton pT
Number of jets

> 27 GeV
> 15 GeV
≥2

=0 =0 =2
- > 150 GeV -

Number of b-tagged jets
m``

mbb - - > 150 GeV
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4.1. Kinematic Distributions in the Top Control Region
In this region the agreement between data and MC is good. The ratio of data over MC is
0.97 ± 0.01 with top-quark purity of 72%. The implementation of NLO Electro Weak (EW)
corrections (purely based on MC simulation)[12, 13, 14] have a very small impact on the ratio
of data over MC, as shown in Figure 3. Other background contributions are from the non-
resonant WW which is about 25%, W+jets, other V V , Z/γ∗ processes add up to 3% to the
total background.
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Figure 3: Lepton kinematics of data and MC simulation in the top CR after applying
requirements shown in Table 1: (a) Leading lepton pT, (b) Sub-leading lepton pT, (c) Angular
separation between two leptons (∆φ``) and (d) Emiss . Uncertainties are statistical only.
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4.2. Kinematic Distributions in the Top Validation Region
In this region the agreement between data and MC is reasonable. The ratio of data over MC is
0.95 with top-quark puritiy of 99%. Other non-top-quark background contributions add up to
1%. The implementation of the NLO EW corrections sligthly improves the agreement between
data and MC, as shown in the tail of the distributions in Figure 4.

1000

2000

3000

4000

5000

6000

E
ve

nt
s 

/ 1
0 

G
eV

 Data  SM (stat)

 WW  Other VV

 t t  Singletop

 ttV  tZ

 W +jets Z/ γ *

 V γ  H[240]S[170]

 H[350]S[240] H[400]S[240]

ATLAS Work in progress

Plot: "CutHighMassbb/Mll"

s = 13 TeV, ∫ Ldt = 36 fb-1

H→ Sh→ eµ+µe

50 100 150 200 250

 [GeV]llm

0.8
0.850.9
0.951
1.051.1

021.151.

D
at

a 
/ S

M
 

(a)

1000

2000

3000

4000

5000

6000

E
ve

nt
s 

/ 1
0 

G
eV

 Data  SM (stat)

 WW  Other VV

 t t  Singletop

 ttV  tZ

 W +jets Z/ γ *

 V γ  H[240]S[170]

 H[350]S[240] H[400]S[240]

ATLAS Work in progress

Plot: "CutHighMassbb/Mll"

s = 13 TeV, ∫ Ldt = 36 fb-1

H→ Sh→ eµ+µe

50 100 150 200 250

 [GeV]llm

0.8
0.850.9
0.951
1.051.1

021.151.

D
at

a 
/ S

M
 

(b)

1000

2000

3000

4000

5000

6000

E
ve

nt
s 

/ 5
 G

eV

 Data  SM (stat)

 WW  Other VV

 t t  Singletop

 ttV  tZ

 W +jets Z/ γ *

 V γ  H[240]S[170]

 H[350]S[240] H[400]S[240]

ATLAS Work in progress

Plot: "CutHighMassbb/leadLepPt"

s = 13 TeV, ∫ Ldt = 36 fb-1

H→ Sh→ eµ+µe

50 100 150 200 250 300

l0 [GeV]
t

p

0.8
0.850.9
0.951
1.051.1
1.151.02

D
at

a 
/ S

M
 

(c)

1000

2000

3000

4000

5000

6000

E
ve

nt
s 

/ 5
 G

eV

 Data  SM (stat)

 WW  Other VV

 t t  Singletop

 ttV  tZ

 W +jets Z/ γ *

 V γ  H[240]S[170]

 H[350]S[240] H[400]S[240]

ATLAS Work in progress

Plot: "CutHighMassbb/leadLepPt"

s = 13 TeV, ∫ Ldt = 36 fb-1

H→ Sh→ eµ+µe

50 100 150 200 250 300

l0 [GeV]
t

p

0.8
0.850.9
0.951
1.051.1
1.151.02

D
at

a 
/ S

M
 

(d)

Figure 4: Comparison of data and MC in the top CR after applying requirements shown in
Table 1: (a) Di-lepton invariant mass (b) Di-lepton invariant mass after NLO EW corrections
(c) Leading lepton pT, (d) Leading lepton pT after NLO EW corrections. Uncertainties are
statistical only.
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Table 2: Number of events observed in data, compared to the numbers of predicted background
events. The analysis is blinded in the SR. Uncertainties are statistical only.

SR top CR top VR
SM Higgs
WW
Other V V
tt̄
Singletop
ttV
tZ
W+jets
Z/γ∗

299.97± 1.56
4789.12± 13.38
421.43± 3.63

12594.71± 32.42
1630.74± 15.97

22.32± 0.41
1.96± 0.04

115.33± 32.44
4716.15± 57.43

3.19± 0.08
1355.89± 7.01
105.01± 1.69

3534.73± 17.30
469.49± 8.66

7.74± 0.24
0.64± 0.02

40.44± 20.30
17.77± 10.83

25.29± 0.24
33.05± 0.84
4.56± 0.27

52658.56± 64.70
2134.64± 17.98

66.83± 0.68
2.01± 0.04

0.00
62.27± 3.76

Total Bkg 24887.97± 78.18 5561.66± 31.55 54991.04± 67.29
Data - 5376 52217
Data/MC - 0.97± 0.01 0.95± 0.00

5. Conclusion
This proceeding presents the top-quark background estimation for the H → Sh search. This
analysis is characterized by two oppositely charged leptons with different flavour and at least
two jets. For this search the top-quark is the dominant SM background with 60% contribution
in the SR. The top-quark background is normalized in the 0 b-tagged jets bin, with the ratio
of data over MC is approximately 0.97 ± 0.01 and top-quark purity of 72%. The modeling of
top-quark process is tested in the 2 b-tagged jets bin, the ratio of data over MC is approximately
0.95 and top-quark purity of 99%. Finally, the NLO EW corrections applied on the top-quark
MC slightly improve the agreement between data and MC in the top CR and VR.
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